Scientific Ballooning Research and Operation Grp.

Hideyuki Fuke

  (福家 英之)

Profile Information

Affiliation
Associate Professor, Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency
Degree
PhD in Science(The University of Tokyo)

Researcher number
10392820
ORCID ID
 https://orcid.org/0000-0002-8071-3398
J-GLOBAL ID
200901069192864044
researchmap Member ID
1000315975

Research History

 1

Major Papers

 212
  • Shusaku KANAYA, Hideyuki FUKE, Yu MIYAZAWA, Hiroyuki TOYOTA, Kazuyuki HIROSE, Ryoto FUNAYAMA, Masashi IKEGAMI
    Journal of Evolving Space Activities, 1 109, Apr 17, 2024  Peer-reviewed
  • K. Sakai, H. Fuke, K. Yoshimura, M. Sasaki, K. Abe, S. Haino, T. Hams, M. Hasegawa, K. C. Kim, M. H. Lee, Y. Makida, J. W. Mitchell, J. Nishimura, M. Nozaki, R. Orito, J. F. Ormes, E. S. Seo, R. E. Streitmatter, N. Thakur, A. Yamamoto, T. Yoshida
    Physical Review Letters, Mar 25, 2024  Peer-reviewed
  • Hideyuki MORI, Hideyuki FUKE, Makoto TAMURA, Tetsuya YOSHIDA
    Journal of Evolving Space Activities, 1 77, Dec 19, 2023  Peer-reviewed
  • O. Adriani, Y. Akaike, K. Asano, Y. Asaoka, E. Berti, G. Bigongiari, W. R. Binns, M. Bongi, P. Brogi, A. Bruno, J. H. Buckley, N. Cannady, G. Castellini, C. Checchia, M. L. Cherry, G. Collazuol, G. A. de Nolfo, K. Ebisawa, A. W. Ficklin, H. Fuke, S. Gonzi, T. G. Guzik, T. Hams, K. Hibino, M. Ichimura, K. Ioka, W. Ishizaki, M. H. Israel, K. Kasahara, J. Kataoka, R. Kataoka, Y. Katayose, C. Kato, N. Kawanaka, Y. Kawakubo, K. Kobayashi, K. Kohri, H. S. Krawczynski, J. F. Krizmanic, P. Maestro, P. S. Marrocchesi, A. M. Messineo, J. W. Mitchell, S. Miyake, A. A. Moiseev, M. Mori, N. Mori, H. M. Motz, K. Munakata, S. Nakahira, J. Nishimura, S. Okuno, J. F. Ormes, S. Ozawa, L. Pacini, P. Papini, B. F. Rauch, S. B. Ricciarini, K. Sakai, T. Sakamoto, M. Sasaki, Y. Shimizu, A. Shiomi, P. Spillantini, F. Stolzi, S. Sugita, A. Sulaj, M. Takita, T. Tamura, T. Terasawa, S. Torii, Y. Tsunesada, Y. Uchihori, E. Vannuccini, J. P. Wefel, K. Yamaoka, S. Yanagita, A. Yoshida, K. Yoshida, W. V. Zober
    Physical Review Letters, 131(19), Nov 9, 2023  Peer-reviewed
  • O. Adriani, Y. Akaike, K. Asano, Y. Asaoka, E. Berti, G. Bigongiari, W. R. Binns, M. Bongi, P. Brogi, A. Bruno, J. H. Buckley, N. Cannady, G. Castellini, C. Checchia, M. L. Cherry, G. Collazuol, G. A. de Nolfo, K. Ebisawa, A. W. Ficklin, H. Fuke, S. Gonzi, T. G. Guzik, T. Hams, K. Hibino, M. Ichimura, K. Ioka, W. Ishizaki, M. H. Israel, K. Kasahara, J. Kataoka, R. Kataoka, Y. Katayose, C. Kato, N. Kawanaka, Y. Kawakubo, K. Kobayashi, K. Kohri, H. S. Krawczynski, J. F. Krizmanic, P. Maestro, P. S. Marrocchesi, A. M. Messineo, J. W. Mitchell, S. Miyake, A. A. Moiseev, M. Mori, N. Mori, H. M. Motz, K. Munakata, S. Nakahira, J. Nishimura, S. Okuno, J. F. Ormes, S. Ozawa, L. Pacini, P. Papini, B. F. Rauch, S. B. Ricciarini, K. Sakai, T. Sakamoto, M. Sasaki, Y. Shimizu, A. Shiomi, P. Spillantini, F. Stolzi, S. Sugita, A. Sulaj, M. Takita, T. Tamura, T. Terasawa, S. Torii, Y. Tsunesada, Y. Uchihori, E. Vannuccini, J. P. Wefel, K. Yamaoka, S. Yanagita, A. Yoshida, K. Yoshida, W. V. Zober
    Physical review letters, 131(10) 109902, Sep 8, 2023  Peer-reviewed
    This corrects the article DOI: 10.1103/PhysRevLett.130.211001.
  • Hideyuki FUKE, Shusaku KANAYA, Yu MIYAZAWA, Hiroyuki TOYOTA, Kazuyuki HIROSE, Ryoto FUNAYAMA, Masashi IKEGAMI
    Journal of Evolving Space Activities, 1 22, Jun 7, 2023  Peer-reviewedLead authorCorresponding author
  • O. Adriani, Y. Akaike, K. Asano, Y. Asaoka, E. Berti, G. Bigongiari, W. R. Binns, M. Bongi, P. Brogi, A. Bruno, J. H. Buckley, N. Cannady, G. Castellini, C. Checchia, M. L. Cherry, G. Collazuol, G. A. de Nolfo, K. Ebisawa, A. W. Ficklin, H. Fuke, S. Gonzi, T. G. Guzik, T. Hams, K. Hibino, M. Ichimura, K. Ioka, W. Ishizaki, M. H. Israel, K. Kasahara, J. Kataoka, R. Kataoka, Y. Katayose, C. Kato, N. Kawanaka, Y. Kawakubo, K. Kobayashi, K. Kohri, H. S. Krawczynski, J. F. Krizmanic, P. Maestro, P. S. Marrocchesi, A. M. Messineo, J. W. Mitchell, S. Miyake, A. A. Moiseev, M. Mori, N. Mori, H. M. Motz, K. Munakata, S. Nakahira, J. Nishimura, S. Okuno, J. F. Ormes, S. Ozawa, L. Pacini, P. Papini, B. F. Rauch, S. B. Ricciarini, K. Sakai, T. Sakamoto, M. Sasaki, Y. Shimizu, A. Shiomi, P. Spillantini, F. Stolzi, S. Sugita, A. Sulaj, M. Takita, T. Tamura, T. Terasawa, S. Torii, Y. Tsunesada, Y. Uchihori, E. Vannuccini, J. P. Wefel, K. Yamaoka, S. Yanagita, A. Yoshida, K. Yoshida, W. V. Zober
    Physical Review Letters, 130(21), May 25, 2023  Peer-reviewed
  • O. Adriani, Y. Akaike, K. Asano, Y. Asaoka, E. Berti, G. Bigongiari, W. R. Binns, M. Bongi, P. Brogi, A. Bruno, J. H. Buckley, N. Cannady, G. Castellini, C. Checchia, M. L. Cherry, G. Collazuol, G. A. de Nolfo, K. Ebisawa, A. W. Ficklin, H. Fuke, S. Gonzi, T. G. Guzik, T. Hams, K. Hibino, M. Ichimura, K. Ioka, W. Ishizaki, M. H. Israel, K. Kasahara, J. Kataoka, R. Kataoka, Y. Katayose, C. Kato, N. Kawanaka, Y. Kawakubo, K. Kobayashi, K. Kohri, H. S. Krawczynski, J. F. Krizmanic, P. Maestro, P. S. Marrocchesi, A. M. Messineo, J. W. Mitchell, S. Miyake, A. A. Moiseev, M. Mori, N. Mori, H. M. Motz, K. Munakata, S. Nakahira, J. Nishimura, S. Okuno, J. F. Ormes, S. Ozawa, L. Pacini, P. Papini, B. F. Rauch, S. B. Ricciarini, K. Sakai, T. Sakamoto, M. Sasaki, Y. Shimizu, A. Shiomi, P. Spillantini, F. Stolzi, S. Sugita, A. Sulaj, M. Takita, T. Tamura, T. Terasawa, S. Torii, Y. Tsunesada, Y. Uchihori, E. Vannuccini, J. P. Wefel, K. Yamaoka, S. Yanagita, A. Yoshida, K. Yoshida, W. V. Zober
    Physical Review Letters, 130(17), Apr 27, 2023  Peer-reviewed
  • Yoshitaka MIZUMURA, Hideyuki FUKE, Tetsuya YOSHIDA
    Journal of Evolving Space Activities, 1 25, Apr 24, 2023  Peer-reviewed
  • Masahiro YAMATANI, Yusuke NAKAGAMI, Hideyuki FUKE, Akiko KAWACHI, Masayoshi KOZAI, Yuki SHIMIZU, Tetsuya YOSHIDA
    Journal of Evolving Space Activities, 1 9, Apr 19, 2023  Peer-reviewed
    The General Antiparticle Spectrometer (GAPS) is a balloon-borne experiment that aims to measure low-energy cosmicray antiparticles. GAPS has developed a new antiparticle identification technique based on exotic atom formation caused by incident particles, which is achieved by ten layers of Si(Li) detector tracker in GAPS. The conventional analysis uses the physical quantities of the reconstructed incident and secondary particles. In parallel with this, we have developed a complementary approach based on deep neural networks. This paper presents a new convolutional neural network (CNN) technique. A three-dimensional CNN takes energy depositions as three-dimensional inputs and learns to identify their positional/energy correlations. The combination of the physical quantities and the CNN technique is also investigated. The findings show that the new technique outperforms existing machine learning-based methods in particle identification.
  • Hideyuki FUKE, Shun OKAZAKI, Akiko KAWACHI, Shohei KOBAYASHI, Masayoshi KOZAI, Hiroyuki OGAWA, Masaru SAIJO, Shuto TAKEUCHI, Kakeru TOKUNAGA
    Journal of Evolving Space Activities, 1 2, Apr 19, 2023  Peer-reviewedLead authorCorresponding author
    This study developed a novel thermal control system to cool detectors of the General AntiParticle Spectrometer (GAPS) before its flights. GAPS is a balloon-borne cosmic-ray observation experiment. In its payload, GAPS contains over 1000 silicon detectors that must be cooled below −40℃. All detectors are thermally coupled to a unique heat-pipe system (HPS) that transfers heat from the detectors to a radiator. The radiator is designed to be cooled below −50℃ during the flight by exposure to space. The pre-flight state of the detectors is checked on the ground at 1 atm and ambient room temperature, but the radiator cannot be similarly cooled. The authors have developed a ground cooling system (GCS) to chill the detectors for ground testing. The GCS consists of a cold plate, a chiller, and insulating foam. The cold plate is designed to be attached to the radiator and cooled by a coolant pumped by the chiller. The payload configuration, including the HPS, can be the same as that of the flight. The GCS design was validated by thermal tests using a scale model. The GCS design is simple and provides a practical guideline, including a simple estimation of appropriate thermal insulation thickness, which can be easily adapted to other applications.
  • Hideyuki Fuke, Shun Okazaki, Akiko Kawachi, Manami Kondo, Hiroyuki Ogawa, Noboru Yamada
    Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1049 168102-168102, Feb 2, 2023  Peer-reviewedLead authorCorresponding author
  • O. Adriani, Y. Akaike, K. Asano, Y. Asaoka, E. Berti, G. Bigongiari, W. R. Binns, M. Bongi, P. Brogi, A. Bruno, J. H. Buckley, N. Cannady, G. Castellini, C. Checchia, M. L. Cherry, G. Collazuol, G. A. de Nolfo, K. Ebisawa, A. W. Ficklin, H. Fuke, S. Gonzi, T. G. Guzik, T. Hams, K. Hibino, M. Ichimura, K. Ioka, W. Ishizaki, M. H. Israel, K. Kasahara, J. Kataoka, R. Kataoka, Y. Katayose, C. Kato, N. Kawanaka, Y. Kawakubo, K. Kobayashi, K. Kohri, H. S. Krawczynski, J. F. Krizmanic, P. Maestro, P. S. Marrocchesi, A. M. Messineo, J. W. Mitchell, S. Miyake, A. A. Moiseev, M. Mori, N. Mori, H. M. Motz, K. Munakata, S. Nakahira, J. Nishimura, S. Okuno, J. F. Ormes, S. Ozawa, L. Pacini, P. Papini, B. F. Rauch, S. B. Ricciarini, K. Sakai, T. Sakamoto, M. Sasaki, Y. Shimizu, A. Shiomi, P. Spillantini, F. Stolzi, S. Sugita, A. Sulaj, M. Takita, T. Tamura, T. Terasawa, S. Torii, Y. Tsunesada, Y. Uchihori, E. Vannuccini, J. P. Wefel, K. Yamaoka, S. Yanagita, A. Yoshida, K. Yoshida, W. V. Zober
    Physical Review Letters, 129(25), Dec 16, 2022  Peer-reviewed
    We present the measurement of the energy dependence of the boron flux in cosmic rays and its ratio to the carbon flux in an energy interval from 8.4 GeV/n to 3.8 TeV/n based on the data collected by the Calorimetric Electron Telescope (CALET) during ∼6.4 yr of operation on the International Space Station. An update of the energy spectrum of carbon is also presented with an increase in statistics over our previous measurement. The observed boron flux shows a spectral hardening at the same transition energy E0∼200 GeV/n of the C spectrum, though B and C fluxes have different energy dependences. The spectral index of the B spectrum is found to be γ=-3.047±0.024 in the interval 25<E<200 GeV/n. The B spectrum hardens by ΔγB=0.25±0.12, while the best fit value for the spectral variation of C is ΔγC=0.19±0.03. The B/C flux ratio is compatible with a hardening of 0.09±0.05, though a single power-law energy dependence cannot be ruled out given the current statistical uncertainties. A break in the B/C ratio energy dependence would support the recent AMS-02 observations that secondary cosmic rays exhibit a stronger hardening than primary ones. We also perform a fit to the B/C ratio with a leaky-box model of the cosmic-ray propagation in the Galaxy in order to probe a possible residual value λ0 of the mean escape path length λ at high energy. We find that our B/C data are compatible with a nonzero value of λ0, which can be interpreted as the column density of matter that cosmic rays cross within the acceleration region.
  • F. Rogers, T. Aramaki, M. Boezio, S.E. Boggs, V. Bonvicini, G. Bridges, D. Campana, W.W. Craig, P. von Doetinchem, E. Everson, L. Fabris, S. Feldman, H. Fuke, F. Gahbauer, C. Gerrity, C.J. Hailey, T. Hayashi, A. Kawachi, M. Kozai, A. Lenni, A. Lowell, M. Manghisoni, N. Marcelli, B. Mochizuki, S.A. I. Mognet, K. Munakata, R. Munini, Y. Nakagami, J. Olson, R.A. Ong, G. Osteria, K.M. Perez, S. Quinn, V. Re, E. Riceputi, B. Roach, J. Ryan, N. Saffold, V. Scotti, Y. Shimizu, R. Sparvoli, A. Stoessl, A. Tiberio, E. Vannuccini, T. Wada, M. Xiao, M. Yamatani, K. Yee, A. Yoshida, T. Yoshida, G. Zampa, J. Zeng, J. Zweerink
    Astroparticle Physics, 102791-102791, Oct, 2022  Peer-reviewed
  • O. Adriani, Y. Akaike, K. Asano, Y. Asaoka, E. Berti, G. Bigongiari, W. R. Binns, M. Bongi, P. Brogi, A. Bruno, J. H. Buckley, N. Cannady, G. Castellini, C. Checchia, M. L. Cherry, G. Collazuol, K. Ebisawa, A. W. Ficklin, H. Fuke, S. Gonzi, T. G. Guzik, T. Hams, K. Hibino, M. Ichimura, K. Ioka, W. Ishizaki, M. H. Israel, K. Kasahara, J. Kataoka, R. Kataoka, Y. Katayose, C. Kato, N. Kawanaka, Y. Kawakubo, K. Kobayashi, K. Kohri, H. S. Krawczynski, J. F. Krizmanic, P. Maestro, P. S. Marrocchesi, A. M. Messineo, J. W. Mitchell, S. Miyake, A. A. Moiseev, M. Mori, N. Mori, H. M. Motz, K. Munakata, S. Nakahira, J. Nishimura, G. A. de Nolfo, S. Okuno, J. F. Ormes, S. Ozawa, L. Pacini, P. Papini, B. F. Rauch, S. B. Ricciarini, K. Sakai, T. Sakamoto, M. Sasaki, Y. Shimizu, A. Shiomi, P. Spillantini, F. Stolzi, S. Sugita, A. Sulaj, M. Takita, T. Tamura, T. Terasawa, S. Torii, Y. Tsunesada, Y. Uchihori, E. Vannuccini, J. P. Wefel, K. Yamaoka, S. Yanagita, A. Yoshida, K. Yoshida, W. V. Zober
    Physical Review Letters, 129(10), Sep 1, 2022  Peer-reviewed
  • O. Adriani, Y. Akaike, K. Asano, Y. Asaoka, E. Berti, G. Bigongiari, W. R. Binns, M. Bongi, P. Brogi, A. Bruno, J. H. Buckley, N. Cannady, G. Castellini, C. Checchia, M. L. Cherry, G. Collazuol, K. Ebisawa, A. W. Ficklin, H. Fuke, S. Gonzi, T. G. Guzik, T. Hams, K. Hibino, M. Ichimura, K. Ioka, W. Ishizaki, M. H. Israel, K. Kasahara, J. Kataoka, R. Kataoka, Y. Katayose, C. Kato, N. Kawanaka, Y. Kawakubo, K. Kobayashi, K. Kohri, H. S. Krawczynski, J. F. Krizmanic, P. Maestro, P. S. Marrocchesi, A. M. Messineo, J. W. Mitchell, S. Miyake, A. A. Moiseev, M. Mori, N. Mori, H. M. Motz, K. Munakata, S. Nakahira, J. Nishimura, G. A. de Nolfo, S. Okuno, J. F. Ormes, N. Ospina, S. Ozawa, L. Pacini, P. Papini, B. F. Rauch, S. B. Ricciarini, K. Sakai, T. Sakamoto, M. Sasaki, Y. Shimizu, A. Shiomi, P. Spillantini, F. Stolzi, S. Sugita, A. Sulaj, M. Takita, T. Tamura, T. Terasawa, S. Torii, Y. Tsunesada, Y. Uchihori, E. Vannuccini, J. P. Wefel, K. Yamaoka, S. Yanagita, A. Yoshida, K. Yoshida, W. V. Zober
    The Astrophysical Journal, 933(1) 85-85, Jul 1, 2022  Peer-reviewed
    Abstract The CALorimetric Electron Telescope (CALET) on the International Space Station consists of a high-energy cosmic-ray CALorimeter (CAL) and a lower-energy CALET Gamma-ray Burst Monitor (CGBM). CAL is sensitive to electrons up to 20 TeV, cosmic-ray nuclei from Z = 1 through Z ∼ 40, and gamma rays over the range 1 GeV–10 TeV. CGBM observes gamma rays from 7 keV to 20 MeV. The combined CAL-CGBM instrument has conducted a search for gamma-ray bursts (GRBs) since 2015 October. We report here on the results of a search for X-ray/gamma-ray counterparts to gravitational-wave events reported during the LIGO/Virgo observing run O3. No events have been detected that pass all acceptance criteria. We describe the components, performance, and triggering algorithms of the CGBM—the two Hard X-ray Monitors consisting of LaBr3(Ce) scintillators sensitive to 7 keV–1 MeV gamma rays and a Soft Gamma-ray Monitor BGO scintillator sensitive to 40 keV–20 MeV—and the high-energy CAL consisting of a charge detection module, imaging calorimeter, and the fully active total absorption calorimeter. The analysis procedure is described and upper limits to the time-averaged fluxes are presented.
  • M. Kozai, K. Tokunaga, H. Fuke, M. Yamada, C.J. Hailey, C. Kato, D. Kraych, M. Law, E. Martinez, K. Munakata, K. Perez, F. Rogers, N. Saffold, Y. Shimizu, K. Tokuda, M. Xiao
    Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1034 166820-166820, Jul, 2022  Peer-reviewed
  • O.Adriani, Y.Akaike, K.Asano, Y.Asaoka, E.Berti, G.Bigongiari, W.R.Binns, M.Bongi, P.Brogi, A.Bruno, J.H.Buckley, N.Cannady, G.Castellini, C.Checchia, M.L.Cherry, G.Collazuol, K.Ebisawa, A.W.Ficklin, H.Fuke, S.Gonzi, T.G.Guzik, T.Hams, K.Hibino, M.Ichimura, K.Ioka, W.Ishizaki, M.H.Israel, K.Kasahara, J.Kataoka, R.Kataoka, Y.Katayose, C.Kato, N.Kawanaka, Y.Kawakubo, K.Kobayashi, K.Kohri, H.S.Krawczynski, J.F.Krizmanic, P.Maestro, P.S.Marrocchesi, A.M.Messineo, J.W.Mitchell, S.Miyake, A.A.Moiseev, M.Mori, N.Mori, H.M.Motz, K.Munakata, S.Nakahira, J.Nishimura, G.A.deNolfo, S.Okuno, J.F.Ormes, N.Ospina, S.Ozawa, L.Pacini, P.Papini, B.F.Rauch, S.B.Ricciarini, K.Sakai, T.Sakamoto, M.Sasaki, Y.Shimizu, A.Shiomi, P.Spillantini, F.Stolzi, S.Sugita, A.Sulaj, M.Takita, T.Tamura, T.Terasawa, S.Torii, Y.Tsunesada, Y.Uchihori, E.Vannuccini, J.P.Wefel, K.Yamaoka, S.Yanagita, A.Yoshida, K.Yoshida, W.V.Zober
    Physical Review Letters, 128(13), Mar, 2022  Peer-reviewed
    The relative abundance of cosmic ray nickel nuclei with respect to iron is by far larger than for all other transiron elements; therefore it provides a favorable opportunity for a low background measurement of its spectrum. Since nickel, as well as iron, is one of the most stable nuclei, the nickel energy spectrum and its relative abundance with respect to iron provide important information to estimate the abundances at the cosmic ray source and to model the Galactic propagation of heavy nuclei. However, only a few direct measurements of cosmic-ray nickel at energy larger than ∼3 GeV/n are available at present in the literature, and they are affected by strong limitations in both energy reach and statistics. In this Letter, we present a measurement of the differential energy spectrum of nickel in the energy range from 8.8 to 240 GeV/n, carried out with unprecedented precision by the Calorimetric Electron Telescope (CALET) in operation on the International Space Station since 2015. The CALET instrument can identify individual nuclear species via a measurement of their electric charge with a dynamic range extending far beyond iron (up to atomic number Z=40). The particle's energy is measured by a homogeneous calorimeter (1.2 proton interaction lengths, 27 radiation lengths) preceded by a thin imaging section (3 radiation lengths) providing tracking and energy sampling. This Letter follows our previous measurement of the iron spectrum [1O. Adriani (CALET Collaboration), Phys. Rev. Lett. 126, 241101 (2021).PRLTAO0031-900710.1103/PhysRevLett.126.241101], and it extends our investigation on the energy dependence of the spectral index of heavy elements. It reports the analysis of nickel data collected from November 2015 to May 2021 and a detailed assessment of the systematic uncertainties. In the region from 20 to 240 GeV/n our present data are compatible within the errors with a single power law with spectral index -2.51±0.07.
  • Shun Okazaki, Hideyuki Fuke, Hiroyuki Ogawa
    Applied Thermal Engineering, 198 117497-117497, Nov, 2021  Peer-reviewed
    We compared the thermal performance of two configuration types of Oscillating Heat Pipe (OHP) experimentally to investigate making heat transfer routing more adaptable. One type of OHP has the conventional configuration of closed-loop multiple-serpentine routing that uses U-shaped turns of 3.75 mm radius. The other type has the proposed circular ring configuration with a much larger radius of 1289 mm. Both types have the same pipe length so that the circular OHP can be considered an "unfolded" layout of the serpentine OHP. The circular OHP has alternating heated and cooled sections at locations corresponding to the sections of the serpentine model. Each type has ten sets of these sections with check valves; the OHPs were oriented horizontally. The working fluid was HFC-134a. Both types of samples functioned normally, and their thermal resistances were almost identical. Each OHP showed traveling pressure waves during operation, which indicated a phase difference at each measuring point. The experiment showed that OHPs, with check valves and alternating heated and cooled sections, can transfer heat without the need for a serpentine configuration and that heat transfer routing can be designed more adaptably.
  • O. Adriani, Y. Akaike, K. Asano, Y. Asaoka, E. Berti, G. Bigongiari, W. R. Binns, M. Bongi, P. Brogi, A. Bruno, J. H. Buckley, N. Cannady, G. Castellini, C. Checchia, M. L. Cherry, G. Collazuol, K. Ebisawa, H. Fuke, S. Gonzi, T. G. Guzik, T. Hams, K. Hibino, M. Ichimura, K. Ioka, W. Ishizaki, M. H. Israel, K. Kasahara, J. Kataoka, R. Kataoka, Y. Katayose, C. Kato, N. Kawanaka, Y. Kawakubo, K. Kobayashi, K. Kohri, H. S. Krawczynski, J. F. Krizmanic, J. Link, P. Maestro, P. S. Marrocchesi, A. M. Messineo, J. W. Mitchell, S. Miyake, A. A. Moiseev, M. Mori, N. Mori, H. M. Motz, K. Munakata, S. Nakahira, J. Nishimura, G. A. de Nolfo, S. Okuno, J. F. Ormes, N. Ospina, S. Ozawa, L. Pacini, P. Papini, B. F. Rauch, S. B. Ricciarini, K. Sakai, T. Sakamoto, M. Sasaki, Y. Shimizu, A. Shiomi, P. Spillantini, F. Stolzi, S. Sugita, A. Sulaj, M. Takita, T. Tamura, T. Terasawa, S. Torii, Y. Tsunesada, Y. Uchihori, E. Vannuccini, J. P. Wefel, K. Yamaoka, S. Yanagita, A. Yoshida, K. Yoshida
    Physical Review Letters, 126(24), Jun 14, 2021  Peer-reviewed
  • N. Saffold, F. Rogers, M. Xiao, R. Bhatt, T. Erjavec, H. Fuke, C.J. Hailey, M. Kozai, D. Kraych, E. Martinez, C. Melo-Carrillo, K. Perez, C. Rodriguez, Y. Shimizu, B. Smallshaw
    Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 997 165015-165015, May, 2021  Peer-reviewed
  • N. Saffold, T. Aramaki, R. Bird, M. Boezio, S.E. Boggs, V. Bonvicini, D. Campana, W.W. Craig, P. von Doetinchem, E. Everson, L. Fabris, H. Fuke, F. Gahbauer, I. Garcia, C. Gerrity, C.J. Hailey, T. Hayashi, C. Kato, A. Kawachi, S. Kobayashi, M. Kozai, A. Lenni, A. Lowell, M. Manghisoni, N. Marcelli, S.I. Mognet, K. Munakata, R. Munini, Y. Nakagami, J. Olson, R.A. Ong, G. Osteria, K. Perez, I. Pope, S. Quinn, V. Re, M. Reed, E. Riceputi, B. Roach, F. Rogers, J.L. Ryan, V. Scotti, Y. Shimizu, M. Sonzogni, R. Sparvoli, A. Stoessl, A. Tiberio, E. Vannuccini, T. Wada, M. Xiao, M. Yamatani, A. Yoshida, T. Yoshida, G. Zampa, J. Zweerink
    Astroparticle Physics, 130 102580-102580, Mar, 2021  Peer-reviewed
  • O. Adriani, Y. Akaike, K. Asano, Y. Asaoka, M. G. Bagliesi, E. Berti, G. Bigongiari, W. R. Binns, M. Bongi, P. Brogi, A. Bruno, J. H. Buckley, N. Cannady, G. Castellini, C. Checchia, M. L. Cherry, G. Collazuol, K. Ebisawa, H. Fuke, S. Gonzi, T. G. Guzik, T. Hams, K. Hibino, M. Ichimura, K. Ioka, W. Ishizaki, M. H. Israel, K. Kasahara, J. Kataoka, R. Kataoka, Y. Katayose, C. Kato, N. Kawanaka, Y. Kawakubo, K. Kobayashi, K. Kohri, H. S. Krawczynski, J. F. Krizmanic, J. Link, P. Maestro, P. S. Marrocchesi, A. M. Messineo, J. W. Mitchell, S. Miyake, A. A. Moiseev, M. Mori, N. Mori, H. M. Motz, K. Munakata, S. Nakahira, J. Nishimura, G. A. de Nolfo, S. Okuno, J. F. Ormes, N. Ospina, S. Ozawa, L. Pacini, F. Palma, P. Papini, B. F. Rauch, S. B. Ricciarini, K. Sakai, T. Sakamoto, M. Sasaki, Y. Shimizu, A. Shiomi, R. Sparvoli, P. Spillantini, F. Stolzi, S. Sugita, J. E. Suh, A. Sulaj, M. Takita, T. Tamura, T. Terasawa, S. Torii, Y. Tsunesada, Y. Uchihori, E. Vannuccini, J. P. Wefel, K. Yamaoka, S. Yanagita, A. Yoshida, K. Yoshida
    Physical Review Letters, 125(25) 251102-251102, Dec 18, 2020  Peer-reviewed
    In this paper, we present the measurement of the energy spectra of carbon and oxygen in cosmic rays based on observations with the Calorimetric Electron Telescope on the International Space Station from October 2015 to October 2019. Analysis, including the detailed assessment of systematic uncertainties, and results are reported. The energy spectra are measured in kinetic energy per nucleon from 10  GeV/n to 2.2  TeV/n with an all-calorimetric instrument with a total thickness corresponding to 1.3 nuclear interaction length. The observed carbon and oxygen fluxes show a spectral index change of ∼0.15 around 200  GeV/n established with a significance >3σ. They have the same energy dependence with a constant C/O flux ratio 0.911±0.006 above 25  GeV/n. The spectral hardening is consistent with that measured by AMS-02, but the absolute normalization of the flux is about 27% lower, though in agreement with observations from previous experiments including the PAMELA spectrometer and the calorimetric balloon-borne experiment CREAM.
  • P. von Doetinchem, K. Perez, T. Aramaki, S. Baker, S. Barwick, R. Bird, M. Boezio, S.E. Boggs, M. Cui, A. Datta, F. Donato, C. Evoli, L. Fabris, L. Fabbietti, E. Ferronato Bueno, N. Fornengo, H. Fuke, C. Gerrity, D. Gomez Coral, C. Hailey, D. Hooper, M. Kachelriess, M. Korsmeier, M. Kozai, R. Lea, N. Li, A. Lowell, M. Manghisoni, I.V. Moskalenko, R. Munini, M. Naskret, T. Nelson, K.C.Y. Ng, F. Nozzoli, A. Oliva, R.A. Ong, G. Osteria, T. Pierog, V. Poulin, S. Profumo, T. Pöschl, S. Quinn, V. Re, F. Rogers, J. Ryan, N. Saffold, K. Sakai, P. Salati, S. Schael, L. Serksnyte, A. Shukla, A. Stoessl, J. Tjemsland, E. Vannuccini, M. Vecchi, M.W. Winkler, D. Wright, M. Xiao, W. Xu, T. Yoshida, G. Zampa, P. Zuccon
    Journal of Cosmology and Astroparticle Physics, 2020(08) 035-035, Aug 18, 2020  Peer-reviewed
  • P Brogi, O Adriani, Y Akaike, K Asano, Y Asaoka, M G Bagliesi, E Berti, G Bigongiari, W R Binns, S Bonechi, M Bongi, A Bruno, J H Buckley, N Cannady, G Castellini, C Checchia, M L Cherry, G Collazuol, V Di Felice, K Ebisawa, H Fuke, T G Guzik, T Hams, K Hibino, M Ichimura, K Ioka, W Ishizaki, M H Israel, K Kasahara, J Kataoka, R Kataoka, Y Katayose, C Kato, N Kawanaka, Y Kawakubo, K Kohri, H S Krawczynski, J F Krizmanic, J Link, P Maestro, P S Marrocchesi, A M Messineo, J W Mitchell, S Miyake, A A Moiseev, M Mori, N Mori, H M Motz, K Munakata, H Murakami, S Nakahira, J Nishimura, G A de Nolfo, S Okuno, J F Ormes, N Ospina, S Ozawa, L Pacini, F Palma, P Papini, B F Rauch, S B Ricciarini, K Sakai, T Sakamoto, M Sasaki, Y Shimizu, A Shiomi, R Sparvoli, P Spillantini, F Stolzi, S Sugita, J E Suh, A Sulaj, I Takahashi, M Takita, T Tamura, T Terasawa, S Torii, Y Tsunesada, Y Uchihori, E Vannuccini, J P Wefel, K Yamaoka, S Yanagita, A Yoshida, K Yoshida
    Physica Scripta, 95(7) 074012-074012, Jul 1, 2020  Peer-reviewed
    The CALorimetric Electron Telescope CALET is a space instrument designed to carry out precision measurements of high energy cosmic-rays on the JEM-EF external platform on the International Space Station, where it has been collecting science data continuously since mid October 2015. In addition to its primary goal of identifying nearby sources of high-energy electrons and possible signatures of dark matter in the electron spectrum, CALET is carrying out extensive measurements of the energy spectra, relative abundances and secondary-to-primary ratios of elements from proton to iron, and even above (up to Z = 40), studying the details of galactic particle propagation and acceleration. An overview of CALET based on the data taken during the first three years of observations is presented, including a direct measurement of the electron+positron energy spectrum from 11 GeV to 4.8 TeV. The proton spectrum has been measured from 50 GeV to 10 TeV covering, for the first time with a single space-borne instrument, the whole energy interval previously investigated in separate sub-ranges by magnetic spectrometers and calorimetric instruments. Preliminary spectra of cosmic-ray nuclei are also presented, together with gamma-ray observations and searches for an e.m. counterpart of LIGO/Virgo GW events.
  • Takuya WADA, Hideyuki FUKE, Yuki SHIMIZU, Tetsuya YOSHIDA
    TRANSACTIONS OF THE JAPAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES, AEROSPACE TECHNOLOGY JAPAN, 18(3) 44-50, May 4, 2020  Peer-reviewed
  • M. Kozai, H. Fuke, M. Yamada, K. Perez, T. Erjavec, C.J. Hailey, N. Madden, F. Rogers, N. Saffold, D. Seyler, Y. Shimizu, K. Tokuda, M. Xiao
    Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 947 162695-162695, Dec, 2019  Peer-reviewed
  • F. Rogers, M. Xiao, K.M. Perez, S. Boggs, T. Erjavec, L. Fabris, H. Fuke, C.J. Hailey, M. Kozai, A. Lowell, N. Madden, M. Manghisoni, S. McBride, V. Re, E. Riceputi, N. Saffold, Y. Shimizu
    Journal of Instrumentation, 14(10) P10009-P10009, Oct 9, 2019  Peer-reviewed
    Large-area lithium-drifted silicon (Si(Li)) detectors, operable 150 degrees C above liquid nitrogen temperature, have been developed for the General Antiparticle Spectrometer (GAPS) balloon mission and will form the first such system to operate in space. These 10 cm-diameter, 2.5 mm-thick multi-strip detectors have been verified in the lab to provide < 4 keV FWHM energy resolution for X-rays as well as tracking capability for charged particles, while operating in conditions (similar to-40C and similar to 1 Pa) achievable on a long-duration balloon mission with a large detector payload. These characteristics enable the GAPS silicon tracker system to identify cosmic antinuclei via a novel technique based on exotic atom formation, de-excitation, and annihilation. Production and large-scale calibration of similar to 1000 detectors has begun for the first GAPS flight, scheduled for late 2021. The detectors developed for GAPS may also have other applications, for example in heavy nuclei identification.
  • O. Adriani, Y. Akaike, K. Asano, Y. Asaoka, M. G. Bagliesi, E. Berti, G. Bigongiari, W. R. Binns, S. Bonechi, M. Bongi, P. Brogi, A. Bruno, J. H. Buckley, N. Cannady, G. Castellini, C. Checchia, M. L. Cherry, G. Collazuol, V. Di Felice, K. Ebisawa, H. Fuke, T. G. Guzik, T. Hams, N. Hasebe, K. Hibino, M. Ichimura, K. Ioka, W. Ishizaki, M. H. Israel, K. Kasahara, J. Kataoka, R. Kataoka, Y. Katayose, C. Kato, N. Kawanaka, Y. Kawakubo, K. Kohri, H. S. Krawczynski, J. F. Krizmanic, T. Lomtadze, P. Maestro, P. S. Marrocchesi, A. M. Messineo, J. W. Mitchell, S. Miyake, A. A. Moiseev, K. Mori, M. Mori, N. Mori, H. M. Motz, K. Munakata, H. Murakami, S. Nakahira, J. Nishimura, G. A. De Nolfo, S. Okuno, J. F. Ormes, S. Ozawa, L. Pacini, F. Palma, P. Papini, A. V. Penacchioni, B. F. Rauch, S. B. Ricciarini, K. Sakai, T. Sakamoto, M. Sasaki, Y. Shimizu, A. Shiomi, R. Sparvoli, P. Spillantini, F. Stolzi, J. E. Suh, A. Sulaj, I. Takahashi, M. Takayanagi, M. Takita, T. Tamura, T. Terasawa, H. Tomida, S. Torii, Y. Tsunesada, Y. Uchihori, S. Ueno, E. Vannuccini, J. P. Wefel, K. Yamaoka, S. Yanagita, A. Yoshida, K. Yoshida
    Physical Review Letters, 122(18) 181102, May 10, 2019  Peer-reviewed
    © 2019 authors. In this paper, we present the analysis and results of a direct measurement of the cosmic-ray proton spectrum with the CALET instrument onboard the International Space Station, including the detailed assessment of systematic uncertainties. The observation period used in this analysis is from October 13, 2015 to August 31, 2018 (1054 days). We have achieved the very wide energy range necessary to carry out measurements of the spectrum from 50 GeV to 10 TeV covering, for the first time in space, with a single instrument the whole energy interval previously investigated in most cases in separate subranges by magnetic spectrometers (BESS-TeV, PAMELA, and AMS-02) and calorimetric instruments (ATIC, CREAM, and NUCLEON). The observed spectrum is consistent with AMS-02 but extends to nearly an order of magnitude higher energy, showing a very smooth transition of the power-law spectral index from-2.81±0.03 (50-500 GeV) neglecting solar modulation effects (or-2.87±0.06 including solar modulation effects in the lower energy region) to-2.56±0.04 (1-10 TeV), thereby confirming the existence of spectral hardening and providing evidence of a deviation from a single power law by more than 3σ.
  • Y. Asaoka, O. Adriani, Y. Akaike, K. Asano, M. G. Bagliesi, E. Berti, G. Bigongiari, W. R. Binns, S. Bonechi, M. Bongi, A. Bruno, P. Brogi, J. H. Buckley, N. Cannady, G. Castellini, C. Checchia, M. L. Cherry, G. Collazuol, V. Di Felice, K. Ebisawa, H. Fuke, T. G. Guzik, T. Hams, N. Hasebe, K. Hibino, M. Ichimura, K. Ioka, W. Ishizaki, M. H. Israel, K. Kasahara, J. Kataoka, R. Kataoka, Y. Katayose, C. Kato, N. Kawanaka, Y. Kawakubo, K. Kohri, H. S. Krawczynski, J. F. Krizmanic, T. Lomtadze, P. Maestro, P. S. Marrocchesi, A. M. Messineo, J. W. Mitchell, S. Miyake, A. A. Moiseev, K. Mori, M. Mori, N. Mori, H. M. Motz, K. Munakata, H. Murakami, S. Nakahira, J. Nishimura, G. A. De Nolfo, S. Okuno, J. F. Ormes, S. Ozawa, L. Pacini, F. Palma, V. Pal'Shin, P. Papini, A. V. Penacchioni, B. F. Rauch, S. B. Ricciarini, K. Sakai, T. Sakamoto, M. Sasaki, Y. Shimizu, A. Shiomi, R. Sparvoli, P. Spillantini, F. Stolzi, S. Sugita, J. E. Suh, A. Sulaj, I. Takahashi, M. Takayanagi, M. Takita, T. Tamura, N. Tateyama, T. Terasawa, H. Tomida, S. Torii, Y. Tsunesada, Y. Uchihori, S. Ueno, E. Vannuccini, J. P. Wefel, K. Yamaoka, S. Yanagita, A. Yoshida, K. Yoshida
    Journal of Physics: Conference Series, 1181(1) 012003, Mar 10, 2019  Peer-reviewed
    © Published under licence by IOP Publishing Ltd. The CALorimetric Electron Telescope (CALET) is a high-energy astroparticle physics space experiment installed on the International Space Station (ISS), developed and operated by Japan in collaboration with Italy and the United States. The CALET mission goals include the investigation of possible nearby sources of high-energy electrons, of the details of galactic particle acceleration and propagation, and of potential signatures of dark matter. CALET measures the cosmic-ray electron+positron flux up to 20 TeV, gamma-rays up to 10 TeV, and nuclei with Z=1 to 40 up to 1, 000 TeV for the more abundant elements during a long-term observation aboard the ISS. Starting science operation in mid-October 2015, CALET performed continuous observation without major interruption with close to 20 million triggered events over 10 GeV per month. Based on the data taken during the first two-years, we present an overview of CALET observations: 1) Electron+positron energy spectrum, 2) Nuclei analysis, 3) Gamma-ray observation including a characterization of on-orbit performance. Results of the electromagnetic counterpart search for LIGO/Virgo gravitational wave events are discussed as well.
  • Akihiro Doi, Yusuke Kono, Kimihiro Kimura, Satomi Nakahara, Tomoaki Oyama, Nozomi Okada, Yasutaka Satou, Kazuyoshi Yamashita, Naoko Matsumoto, Mitsuhisa Baba, Daisuke Yasuda, Shunsaku Suzuki, Yutaka Hasegawa, Mareki Honma, Hiroaki Tanaka, Kosei Ishimura, Yasuhiro Murata, Reiho Shimomukai, Tomohiro Tachi, Kazuya Saito, Naohiko Watanabe, Nobutaka Bando, Osamu Kameya, Yoshinori Yonekura, Mamoru Sekido, Yoshiyuki Inoue, Hiraku Sakamoto, Nozomu Kogiso, Yasuhiro Shoji, Hideo Ogawa, Kenta Fujisawa, Masanao Narita, Hiroshi Shibai, Hideyuki Fuke, Kenta Uehara, Shoko Koyama
    Advances in Space Research, 63(1) 779-793, Jan, 2019  Peer-reviewed
    The balloon-borne very long baseline interferometry (VLBI) experiment is a technical feasibility study for performing radio interferometry in the stratosphere. The flight model has been developed. A balloon-borne VLBI station will be launched to establish interferometric fringes with ground-based VLBI stations distributed over the Japanese islands at an observing frequency of approximately 20 GHz as the first step. This paper describes the system design and development of a series of observing instruments and bus systems. In addition to the advantages of avoiding the atmospheric effects of absorption and fluctuation in high frequency radio observation, the mobility of a station can improve the sampling coverage ("uv-coverage") by increasing the number of baselines by the number of ground-based counterparts for each observation day. This benefit cannot be obtained with conventional arrays that solely comprise ground-based stations. The balloon-borne VLBI can contribute to a future progress of research fields such as black holes by direct imaging. (C) 2018 Published by Elsevier Ltd on behalf of COSPAR.
  • Kerstin Perez, Tsuguo Aramaki, Charles J. Hailey, Rachel Carr, Tyler Erjavec, Hideyuki Fuke, Amani Garvin, Cassia Harper, Glenn Kewley, Norman Madden, Sarah Mechbal, Field Rogers, Nathan Saffold, Gordon Tajiri, Katsuhiko Tokuda, Jason Williams, Minoru Yamada
    Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 905 12-21, Oct, 2018  Peer-reviewed
    A Si(Li) detector fabrication procedure has been developed with the aim of satisfying the unique requirements of the GAPS (General Antiparticle Spectrometer) experiment. Si(Li) detectors are particularly well-suited to the GAPS detection scheme, in which several planes of detectors act as the target to slow and capture an incoming antiparticle into an exotic atom, as well as the spectrometer and tracker to measure the resulting decay X-rays and annihilation products. These detectors must provide the absorption depth, energy resolution, tracking efficiency, and active area necessary for this technique, all within the significant temperature, power, and cost constraints of an Antarctic long-duration balloon flight. We report here on the fabrication and performance of prototype 2 ''-diameter, 1-1.25 mm-thick, single-strip Si(Li) detectors that provide the necessary X-ray energy resolution of similar to 4 keV for a cost per unit area that is far below that of previously-acquired commercial detectors. This fabrication procedure is currently being optimized for the 4 ''-diameter, 2.5 mm-thick, multi-strip geometry that will be used for the GAPS flight detectors.
  • N. Cannady, Y. Asaoka, F. Satoh, M. Tanaka, S. Torii, M. L. Cherry, M. Mori, O. Adriani, Y. Akaike, K. Asano, M. G. Bagliesi, E. Berti, G. Bigongiari, W. R. Binns, S. Bonechi, M. Bongi, P. Brogi, J. H. Buckley, G. Castellini, C. Checchia, G. Collazuol, V. Di Felice, K. Ebisawa, H. Fuke, T. G. Guzik, T. Hams, M. Hareyama, N. Hasebe, K. Hibino, M. Ichimura, K. Ioka, W. Ishizaki, M. H. Israel, K. Kasahara, J. Kataoka, R. Kataoka, Y. Katayose, C. Kato, N. Kawanaka, Y. Kawakubo, K. Kohri, H. S. Krawczynski, J. F. Krizmanic, T. Lomtadze, P. Maestro, P. S. Marrocchesi, A. M. Messineo, J. W. Mitchell, S. Miyake, A. A. Moiseev, K. Mori, N. Mori, H. M. Motz, K. Munakata, H. Murakami, S. Nakahira, J. Nishimura, G. A.De Nolfo, S. Okuno, J. F. Ormes, S. Ozawa, L. Pacini, F. Palma, P. Papini, A. V. Penacchioni, B. F. Rauch, S. B. Ricciarini, K. Sakai, T. Sakamoto, M. Sasaki, Y. Shimizu, A. Shiomi, R. Sparvoli, P. Spillantini, F. Stolzi, J. E. Suh, A. Sulaj, I. Takahashi, M. Takayanagi, M. Takita, T. Tamura, N. Tateyama, T. Terasawa, H. Tomida, Y. Tsunesada, Y. Uchihori, S. Ueno, E. Vannuccini, J. P. Wefel, K. Yamaoka, S. Yanagita, A. Yoshida, K. Yoshida
    Astrophysical Journal, Supplement Series, 238(1) 5, Sep, 2018  Peer-reviewed
    © 2018. The American Astronomical Society. All rights reserved. The CALorimetric Electron Telescope primary detector (CALET-CAL) is a 30 radiation-length-deep hybrid calorimeter designed for the accurate measurement of high-energy cosmic rays. It is capable of triggering on and giving near complete containment of electromagnetic showers from primary electrons and gamma rays from 1 GeV to over 10 TeV. The first 24 months of on-orbit scientific data (2015 November 01-2017 October 31) provide valuable characterization of the performance of the calorimeter based on analyses of the gamma-ray data set in general and bright point sources in particular. We describe the gamma-ray analysis, the expected performance of the calorimeter based on Monte Carlo simulations, the agreement of the flight data with the simulated results, and the outlook for long-term gamma-ray observations with the CAL.
  • O. Adriani, Y. Akaike, K. Asano, Y. Asaoka, M. G. Bagliesi, E. Berti, G. Bigongiari, W. R. Binns, S. Bonechi, M. Bongi, P. Brogi, J. H. Buckley, N. Cannady, G. Castellini, C. Checchia, M. L. Cherry, G. Collazuol, V. Di Felice, K. Ebisawa, H. Fuke, T. G. Guzik, T. Hams, M. Hareyama, N. Hasebe, K. Hibino, M. Ichimura, K. Ioka, W. Ishizaki, M. H. Israel, K. Kasahara, J. Kataoka, R. Kataoka, Y. Katayose, C. Kato, N. Kawanaka, Y. Kawakubo, H. S. Krawczynski, J. F. Krizmanic, K. Kohri, T. Lomtadze, P. Maestro, P. S. Marrocchesi, A. M. Messineo, J. W. Mitchell, S. Miyake, A. A. Moiseev, K. Mori, M. Mori, N. Mori, H. M. Motz, K. Munakata, H. Murakami, S. Nakahira, J. Nishimura, G. A. De Nolfo, S. Okuno, J. F. Ormes, S. Ozawa, L. Pacini, F. Palma, P. Papini, A. V. Penacchioni, B. F. Rauch, S. B. Ricciarini, K. Sakai, T. Sakamoto, M. Sasaki, Y. Shimizu, A. Shiomi, R. Sparvoli, P. Spillantini, F. Stolzi, J. E. Suh, A. Sulaj, I. Takahashi, M. Takayanagi, M. Takita, T. Tamura, N. Tateyama, T. Terasawa, H. Tomida, S. Torii, Y. Tsunesada, Y. Uchihori, S. Ueno, E. Vannuccini, J. P. Wefel, K. Yamaoka, S. Yanagita, A. Yoshida, K. Yoshida
    Astrophysical Journal, 863(2) 160, Aug 20, 2018  Peer-reviewed
    © 2018. The American Astronomical Society. All rights reserved. We present the results of searches for gamma-ray counterparts of the LIGO/Virgo gravitational wave events using CALorimetric Electron Telescope (CALET) observations. The main instrument of CALET, CALorimeter (CAL), observes gamma-rays from ∼1 GeV up to 10 TeV with a field of view (FOV) of nearly 2 sr. In addition, the CALET gamma-ray burst monitor views ∼3 sr and ∼2π sr of the sky in the 7 keV-1 MeV and the 40 keV-20 MeV bands, respectively, by using two different crystal scintillators. The CALET observations on the International Space Station started in 2015 October, and here we report analyses of events associated with the following gravitational wave events: GW151226, GW170104, GW170608, GW170814, and GW170817. Although only upper limits on gamma-ray emission are obtained, they correspond to a luminosity of 1049 ∼ 1053 erg s-1 in the GeV energy band depending on the distance and the assumed time duration of each event, which is approximately on the order of luminosity of typical short gamma-ray bursts. This implies that there will be a favorable opportunity to detect high-energy gamma-ray emission in further observations if additional gravitational wave events with favorable geometry will occur within our FOV. We also show the sensitivity of CALET for gamma-ray transient events, which is on the order of 10-7 erg cm-2 s-1 for an observation of 100 s in duration.
  • Shun Okazaki, Hideyuki Fuke, Hiroyuki Ogawa, Yoshiro Miyazaki, Katsumasa Takahashi, Noboru Yamada
    Applied Thermal Engineering, 141 20-28, Aug, 2018  Peer-reviewed
    In this study, a newly proposed heat pipe system was investigated to transfer heat from a vertical heated plate to a vertical cooled plate arranged in parallel. The heat pipe system comprises 32 loops connected in series and a reservoir. Each square-shaped loop (with a side length of 2 m) comprises a capillary tube with an inner diameter of 1.0 mm without any internal wick. The system's overall thermal performance was investigated at room temperature using R410A as the working fluid. Temperatures, pressures, and reservoir weight were monitored, and thereby confirming that the system transfers heat up to several hundred watts by a passive two-phase flow. Numerical simulations with a simple model were consistent with the data and verified that the saturated pressure of the system is controlled by the reservoir temperature independent of the amount of heat load.
  • Y. Asaoka, S. Ozawa, S. Torii, O. Adriani, Y. Akaike, K. Asano, M. G. Bagliesi, G. Bigongiari, W. R. Binns, S. Bonechi, M. Bongi, P. Brogi, J. H. Buckley, N. Cannady, G. Castellini, C. Checchia, M. L. Cherry, G. Collazuol, V. Di Felice, K. Ebisawa, H. Fuke, T. G. Guzik, T. Hams, M. Hareyama, N. Hasebe, K. Hibino, M. Ichimura, K. Ioka, W. Ishizaki, M. H. Israel, A. Javaid, K. Kasahara, J. Kataoka, R. Kataoka, Y. Katayose, C. Kato, N. Kawanaka, Y. Kawakubo, H. S. Krawczynski, J. F. Krizmanic, S. Kuramata, T. Lomtadze, P. Maestro, P. S. Marrocchesi, A. M. Messineo, J. W. Mitchell, S. Miyake, K. Mizutani, A. A. Moiseev, K. Mori, M. Mori, N. Mori, H. M. Motz, K. Munakata, H. Murakami, S. Nakahira, J. Nishimura, G. A. de Nolfo, S. Okuno, J. F. Ormes, L. Pacini, F. Palma, P. Papini, A. V. Penacchioni, B. F. Rauch, S. B. Ricciarini, K. Sakai, T. Sakamoto, M. Sasaki, Y. Shimizu, A. Shiomi, R. Sparvoli, P. Spillantini, F. Stolzi, I. Takahashi, M. Takayanagi, M. Takita, T. Tamura, N. Tateyama, T. Terasawa, H. Tomida, Y. Tsunesada, Y. Uchihori, S. Ueno, E. Vannuccini, J. P. Wefel, K. Yamaoka, S. Yanagita, A. Yoshida, K. Yoshida, T. Yuda
    Astroparticle Physics, 100 29-37, Jul, 2018  Peer-reviewed
    © 2018 Elsevier B.V. The CALorimetric Electron Telescope (CALET), launched for installation on the International Space Station (ISS) in August, 2015, has been accumulating scientific data since October, 2015. CALET is intended to perform long-duration observations of high-energy cosmic rays onboard the ISS. CALET directly measures the cosmic-ray electron spectrum in the energy range of 1 GeV to 20 TeV with a 2% energy resolution above 30 GeV. In addition, the instrument can measure the spectrum of gamma rays well into the TeV range, and the spectra of protons and nuclei up to a PeV. In order to operate the CALET onboard ISS, JAXA Ground Support Equipment (JAXA-GSE) and the Waseda CALET Operations Center (WCOC) have been established at JAXA and Waseda University, respectively. Scientific operations using CALET are planned at WCOC, taking into account orbital variations of geomagnetic rigidity cutoff. Scheduled command sequences are used to control the CALET observation modes on orbit. Calibration data acquisition by, for example, recording pedestal and penetrating particle events, a low-energy electron trigger mode operating at high geomagnetic latitude, a low-energy gamma-ray trigger mode operating at low geomagnetic latitude, and an ultra heavy trigger mode, are scheduled around the ISS orbit while maintaining maximum exposure to high-energy electrons and other high-energy shower events by always having the high-energy trigger mode active. The WCOC also prepares and distributes CALET flight data to collaborators in Italy and the United States. As of August 31, 2017, the total observation time is 689 days with a live time fraction of the total time of ∼ 84%. Nearly 450 million events are collected with a high-energy (E > 10 GeV) trigger. In addition, calibration data acquisition and low-energy trigger modes, as well as an ultra-heavy trigger mode, are consistently scheduled around the ISS orbit. By combining all operation modes with the excellent-quality on-orbit data collected thus far, it is expected that a five-year observation period will provide a wealth of new and interesting results.
  • O. Adriani, Y. Akaike, K. Asano, Y. Asaoka, M. G. Bagliesi, E. Berti, G. Bigongiari, W. R. Binns, S. Bonechi, M. Bongi, P. Brogi, J. H. Buckley, N. Cannady, G. Castellini, C. Checchia, M. L. Cherry, G. Collazuol, V. Di Felice, K. Ebisawa, H. Fuke, T. G. Guzik, T. Hams, M. Hareyama, N. Hasebe, K. Hibino, M. Ichimura, K. Ioka, W. Ishizaki, M. H. Israel, K. Kasahara, J. Kataoka, R. Kataoka, Y. Katayose, C. Kato, N. Kawanaka, Y. Kawakubo, K. Kohri, H. S. Krawczynski, J. F. Krizmanic, T. Lomtadze, P. Maestro, P. S. Marrocchesi, A. M. Messineo, J. W. Mitchell, S. Miyake, A. A. Moiseev, K. Mori, M. Mori, N. Mori, H. M. Motz, K. Munakata, H. Murakami, S. Nakahira, J. Nishimura, G. A. De Nolfo, S. Okuno, J. F. Ormes, S. Ozawa, L. Pacini, F. Palma, P. Papini, A. V. Penacchioni, B. F. Rauch, S. B. Ricciarini, K. Sakai, T. Sakamoto, M. Sasaki, Y. Shimizu, A. Shiomi, R. Sparvoli, P. Spillantini, F. Stolzi, J. E. Suh, A. Sulaj, I. Takahashi, M. Takayanagi, M. Takita, T. Tamura, N. Tateyama, T. Terasawa, H. Tomida, S. Torii, Y. Tsunesada, Y. Uchihori, S. Ueno, E. Vannuccini, J. P. Wefel, K. Yamaoka, S. Yanagita, A. Yoshida, K. Yoshida
    Physical Review Letters, 120(26) 261102, Jun 25, 2018  Peer-reviewed
    © 2018 American Physical Society. Extended results on the cosmic-ray electron + positron spectrum from 11 GeV to 4.8 TeV are presented based on observations with the Calorimetric Electron Telescope (CALET) on the International Space Station utilizing the data up to November 2017. The analysis uses the full detector acceptance at high energies, approximately doubling the statistics compared to the previous result. CALET is an all-calorimetric instrument with a total thickness of 30 X0 at normal incidence and fine imaging capability, designed to achieve large proton rejection and excellent energy resolution well into the TeV energy region. The observed energy spectrum in the region below 1 TeV shows good agreement with Alpha Magnetic Spectrometer (AMS-02) data. In the energy region below ∼300 GeV, CALET's spectral index is found to be consistent with the AMS-02, Fermi Large Area Telescope (Fermi-LAT), and Dark Matter Particle Explorer (DAMPE), while from 300 to 600 GeV the spectrum is significantly softer than the spectra from the latter two experiments. The absolute flux of CALET is consistent with other experiments at around a few tens of GeV. However, it is lower than those of DAMPE and Fermi-LAT with the difference increasing up to several hundred GeV. The observed energy spectrum above ∼1 TeV suggests a flux suppression consistent within the errors with the results of DAMPE, while CALET does not observe any significant evidence for a narrow spectral feature in the energy region around 1.4 TeV. Our measured all-electron flux, including statistical errors and a detailed breakdown of the systematic errors, is tabulated in the Supplemental Material in order to allow more refined spectral analyses based on our data.
  • O. Adriani, Y. Akaike, K. Asano, Y. Asaoka, M. G. Bagliesi, G. Bigongiari, W. R. Binns, S. Bonechi, M. Bongi, P. Brogi, J. H. Buckley, N. Cannady, G. Castellini, C. Checchia, M. L. Cherry, G. Collazuol, V. Di Felice, K. Ebisawa, H. Fuke, T. G. Guzik, T. Hams, M. Hareyama, N. Hasebe, K. Hibino, M. Ichimura, K. Ioka, W. Ishizaki, M. H. Israel, A. Javaid, K. Kasahara, J. Kataoka, R. Kataoka, Y. Katayose, C. Kato, N. Kawanaka, Y. Kawakubo, H. S. Krawczynski, J. F. Krizmanic, S. Kuramata, T. Lomtadze, P. Maestro, P. S. Marrocchesi, A. M. Messineo, J. W. Mitchell, S. Miyake, K. Mizutani, A. A. Moiseev, K. Mori, M. Mori, N. Mori, H. M. Motz, K. Munakata, H. Murakami, S. Nakahira, J. Nishimura, G. A. De Nolfo, S. Okuno, J. F. Ormes, S. Ozawa, L. Pacini, F. Palma, P. Papini, A. V. Penacchioni, B. F. Rauch, S. B. Ricciarini, K. Sakai, T. Sakamoto, M. Sasaki, Y. Shimizu, A. Shiomi, R. Sparvoli, P. Spillantini, F. Stolzi, I. Takahashi, M. Takayanagi, M. Takita, T. Tamura, N. Tateyama, T. Terasawa, H. Tomida, S. Torii, Y. Tsunesada, Y. Uchihori, S. Ueno, E. Vannuccini, J. P. Wefel, K. Yamaoka, S. Yanagita, A. Yoshida, K. Yoshida, T. Yuda
    Physical Review Letters, 119(18) 181101, Nov 1, 2017  Peer-reviewed
    © 2017 Published by the American Physical Society. First results of a cosmic-ray electron and positron spectrum from 10 GeV to 3 TeV is presented based upon observations with the CALET instrument on the International Space Station starting in October, 2015. Nearly a half million electron and positron events are included in the analysis. CALET is an all-calorimetric instrument with total vertical thickness of 30 X0 and a fine imaging capability designed to achieve a large proton rejection and excellent energy resolution well into the TeV energy region. The observed energy spectrum over 30 GeV can be fit with a single power law with a spectral index of -3.152±0.016 (stat+syst). Possible structure observed above 100 GeV requires further investigation with increased statistics and refined data analysis.
  • K. Abe, H. Fuke, S. Haino, T. Hams, M. Hasegawa, K. C. Kim, M. H. Lee, Y. Makida, J. W. Mitchell, J. Nishimura, M. Nozaki, R. Orito, J. F. Ormes, N. Picot-Clemente, K. Sakai, M. Sasaki, E. S. Seo, R. E. Streitmatter, J. Suzuki, K. Tanaka, N. Thakur, A. Yamamoto, T. Yoshida, K. Yoshimura
    ADVANCES IN SPACE RESEARCH, 60(4) 806-814, Aug, 2017  Peer-reviewed
    The balloon-borne experiment with a superconducting spectrometer (BESS) instrument was developed as a high-resolution, high-geometric-acceptance magnetic-rigidity spectrometer for sensitive measurements of cosmic-ray antiparticles, searches for antinuclei, and precise measurements of the absolute fluxes of light GCR elements and isotopes. The original BESS experiment flew 8 times over Lynn Lake, Canada and once from Fort Sumner, USA during the period of 1993 through 2002, with continuous improvement in the instrument. Based on the instrument concept inherited from the BESS spectrometer, a very low instrumental energy cutoff for antiprotons was achieved with a new thin-walled superconducting magnet and removal of the outer pressure vessel for BESS-Polar project. The first and second scientific flights called BESS-Polar I/II were successfully performed, over Antarctica in 2004 December and 2007 December respectively. We report the scientific results, focusing on the long-duration flights of BESS-Polar I (2004) and BESS-Polar II (2007-2008). (C) 2017 COSPAR. Published by Elsevier Ltd. All rights reserved.
  • H. Fuke, S. Okazaki, H. Ogawa, Y. Miyazaki
    Journal of Astronomical Instrumentation, 06(02) 1740006-1740006, Jun 25, 2017  Peer-reviewed
    The oscillating heat pipe (OHP) is a novel heat-transfer technique used in thermal engineering. Although the OHP offers many technical advantages, it has not yet been actually used in the sky. Motivated by the need to develop a cooling system for use in the balloon-borne General Anti-Particle Spectrometer (GAPS) project, we are developing OHP technologies. To demonstrate the thermal performances of an OHP in real balloon flight conditions, a scaled-down OHP model was launched by a stratospheric balloon in Japan. In this study, we report the results of the flight demonstration.
  • H. Fuke
    Journal of Astronomical Instrumentation, 6(2) 1740001, Jun 1, 2017  Peer-reviewed
    Since 2008, the Japan Aerospace Exploration Agency (JAXA) has carried out annual domestic balloon campaigns from Taiki Aerospace Research Field (TARF). Productive results have been obtained by many projects in academic fields such as atmospheric science, space engineering, cosmic-ray physics, and astronomy. In 2013, an 80,000-m3 balloon made from a 2.8-μm ultra-thin polyethylene film reached an altitude of 53.7 km, equaling the world record for the altitude of an unmanned balloon. In 2015, JAXA carried out a balloon campaign from Alice Springs in Australia as a precursor of future sustainable overseas activities to compliment the domestic ones at TARF. In this paper, we discuss recent highlights of and future prospects for Japanese scientific ballooning.
  • Y. Shoji, H. Fuke, K. Hamada, I. Iijima, C. Ikeda, N. Izutsu, Y. Kakehashi, Y. Matsuzaka, T. Sato, M. Tamura, T. Yoshida
    Journal of Astronomical Instrumentation, 6(2) 1740005, Jun 1, 2017  Peer-reviewedCorresponding author
    Stratospheric balloons have been used worldwide for more than half a century for various scientific missions. However such balloon operations are facing safety issues due to the reduction in appropriate sites for landing. Instead of landing on the ground, landing and recovering on the sea can be a radical solution to this problem. Marine search-and-recovery operations for balloons are not conducted commonly however, such the operation has been uniquely developed in Japan for more than 40 years. This study describes the methodology for such search-and-recovery of balloons and gondolas through examination of multiple case studies.
  • Y. Asaoka, Y. Akaike, Y. Komiya, R. Miyata, S. Torii, O. Adriani, K. Asano, M. G. Bagliesi, G. Bigongiari, W. R. Binns, S. Bonechi, M. Bongi, P. Brogi, J. H. Buckley, N. Cannady, G. Castellini, C. Checchia, M. L. Cherry, G. Collazuol, V. Di Felice, K. Ebisawa, H. Fuke, T. G. Guzik, T. Hams, M. Hareyama, N. Hasebe, K. Hibino, M. Ichimura, K. Ioka, W. Ishizaki, M. H. Israel, A. Javaid, K. Kasahara, J. Kataoka, R. Kataoka, Y. Katayose, C. Kato, N. Kawanaka, Y. Kawakubo, H. Kitamura, H. S. Krawczynski, J. F. Krizmanic, S. Kuramata, T. Lomtadze, P. Maestro, P. S. Marrocchesi, A. M. Messineo, J. W. Mitchell, S. Miyake, K. Mizutani, A. A. Moiseev, K. Mori, M. Mori, N. Mori, H. M. Motz, K. Munakata, H. Murakami, Y. E. Nakagawa, S. Nakahira, J. Nishimura, S. Okuno, J. F. Ormes, S. Ozawa, L. Pacini, F. Palma, P. Papini, A. V. Penacchioni, B. F. Rauch, S. Ricciarini, K. Sakai, T. Sakamoto, M. Sasaki, Y. Shimizu, A. Shiomi, R. Sparvoli, P. Spillantini, F. Stolzi, I. Takahashi, M. Takayanagi, M. Takita, T. Tamura, N. Tateyama, T. Terasawa, H. Tomida, Y. Tsunesada, Y. Uchihori, S. Ueno, E. Vannuccini, J. P. Wefel, K. Yamaoka, S. Yanagita, A. Yoshida, K. Yoshida, T. Yuda
    Astroparticle Physics, 91 1-10, May 1, 2017  Peer-reviewed
    © 2017 The Authors In August 2015, the CALorimetric Electron Telescope (CALET), designed for long exposure observations of high energy cosmic rays, docked with the International Space Station (ISS) and shortly thereafter began to collect data. CALET will measure the cosmic ray electron spectrum over the energy range of 1 GeV to 20 TeV with a very high resolution of 2% above 100 GeV, based on a dedicated instrument incorporating an exceptionally thick 30 radiation-length calorimeter with both total absorption and imaging (TASC and IMC) units. Each TASC readout channel must be carefully calibrated over the extremely wide dynamic range of CALET that spans six orders of magnitude in order to obtain a degree of calibration accuracy matching the resolution of energy measurements. These calibrations consist of calculating the conversion factors between ADC units and energy deposits, ensuring linearity over each gain range, and providing a seamless transition between neighboring gain ranges. This paper describes these calibration methods in detail, along with the resulting data and associated accuracies. The results presented in this paper show that a sufficient accuracy was achieved for the calibrations of each channel in order to obtain a suitable resolution over the entire dynamic range of the electron spectrum measurement.
  • O. Adriani, Y. Akaike, K. Asano, Y. Asaoka, M. G. Bagliesi, G. Bigongiari, W. R. Binns, S. Bonechi, M. Bongi, P. Brogi, J. H. Buckley, N. Cannady, G. Castellini, C. Checchia, M. L. Cherry, G. Collazuol, V. Di Felice, K. Ebisawa, H. Fuke, T. G. Guzik, T. Hams, M. Hareyama, N. Hasebe, K. Hibino, M. Ichimura, K. Ioka, W. Ishizaki, M. H. Israel, A. Javaid, K. Kasahara, J. Kataoka, R. Kataoka, Y. Katayose, C. Kato, N. Kawanaka, Y. Kawakubo, H. Kitamura, H. S. Krawczynski, J. F. Krizmanic, S. Kuramata, T. Lomtadze, P. Maestro, P. S. Marrocchesi, A. M. Messineo, J. W. Mitchell, S. Miyake, K. Mizutani, A. A. Moiseev, K. Mori, M. Mori, N. Mori, H. M. Motz, K. Munakata, H. Murakami, Y. E. Nakagawa, S. Nakahira, J. Nishimura, S. Okuno, J. F. Ormes, S. Ozawa, L. Pacini, F. Palma, P. Papini, A. V. Penacchioni, B. F. Rauch, S. Ricciarini, K. Sakai, T. Sakamoto, M. Sasaki, Y. Shimizu, A. Shiomi, R. Sparvoli, P. Spillantini, F. Stolzi, I. Takahashi, M. Takayanagi, M. Takita, T. Tamura, N. Tateyama, T. Terasawa, H. Tomida, S. Torii, Y. Tsunesada, Y. Uchihori, S. Ueno, E. Vannuccini, J. P. Wefel, K. Yamaoka, S. Yanagita, A. Yoshida, K. Yoshida, T. Yuda
    Astrophysical Journal Letters, 829(1) L20, Sep 20, 2016  Peer-reviewed
    © 2016. The American Astronomical Society. All rights reserved.. We present upper limits in the hard X-ray and gamma-ray bands at the time of the Laser Interferometer Gravitational-wave Observatory (LIGO) gravitational-wave event GW151226 derived from the CALorimetric Electron Telescope (CALET) observation. The main instrument of CALET, CALorimeter (CAL), observes gamma-rays from ∼1 GeV up to 10 TeV with a field of view of ∼2 sr. The CALET gamma-ray burst monitor (CGBM) views ∼3 sr and ∼2π sr of the sky in the 7 keV-1 MeV and the 40 keV-20 MeV bands, respectively, by using two different scintillator-based instruments. The CGBM covered 32.5% and 49.1% of the GW151226 sky localization probability in the 7 keV-1 MeV and 40 keV-20 MeV bands respectively. We place a 90% upper limit of 2 ×10-7 erg cm-2 s-1 in the 1-100 GeV band where CAL reaches 15% of the integrated LIGO probability (∼1.1 sr). The CGBM 7σ upper limits are 1.0 ×10-6 erg cm-2 s-1 (7-500 keV) and 1.8 ×10-6 erg cm-2 s-1 (50-1000 keV) for a 1 s exposure. Those upper limits correspond to the luminosity of 3-5 ×1049 erg s-1, which is significantly lower than typical short GRBs.
  • K. Abe, H. Fuke, S. Haino, T. Hams, M. Hasegawa, A. Horikoshi, A. Itazaki, K. C. Kim, T. Kumazawa, A. Kusumoto, M. H. Lee, Y. Makida, S. Matsuda, Y. Matsukawa, K. Matsumoto, J. W. Mitchell, Z. Myers, J. Nishimura, M. Nozaki, R. Orito, J. F. Ormes, N. Picot-Clemente, K. Sakai, M. Sasaki, E. S. Seo, Y. Shikaze, R. Shinoda, E. Streitmatter, J. Suzuki, Y. Takasugi, K. Takeuchi, K. Tanaka, N. Thakur, T. Yamagami, A. Yamamoto, T. Yoshida, K. Yoshimura
    ASTROPHYSICAL JOURNAL, 822(2) 65, May, 2016  Peer-reviewed
    The BESS-Polar Collaboration measured the energy spectra of cosmic-ray protons and helium during two long-duration balloon flights over Antarctica in 2004 December and 2007 December at substantially different levels of solar modulation. Proton and helium spectra probe the origin and propagation history of cosmic rays in the galaxy, and are essential to calculations of the expected spectra of cosmic-ray antiprotons, positrons, and electrons from interactions of primary cosmic-ray nuclei with the interstellar gas, and to calculations of atmospheric muons and neutrinos. We report absolute spectra at the top of the atmosphere for cosmic-ray protons in the kinetic energy range 0.2-160 GeV and helium nuclei in the range 0.15-80 GeV/nucleon. The corresponding magnetic-rigidity ranges are 0.6-160 GV for protons and 1.1-160 GV for helium. These spectra are compared to measurements from previous BESS flights and from ATIC-2, PAMELA, and AMS-02. We also report the ratio of the proton and helium fluxes from 1.1 to 160 GV and compare this to the ratios from PAMELA and AMS-02.
  • T. Aramaki, S. Boggs, S. Bufalino, L. Dal, P. von Doetinchem, F. Donato, N. Fornengo, H. Fuke, M. Grefe, C. Hailey, B. Hamilton, A. Ibarra, J. Mitchell, I. Mognet, R. A. Ong, R. Pereira, K. Perez, A. Putze, A. Raklev, P. Salati, M. Sasaki, G. Tarle, A. Urbano, A. Vittino, S. Wild, W. Xue, K. Yoshimura
    PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 618 1-37, Mar, 2016  Peer-reviewed
    Recent years have seen increased theoretical and experimental effort towards the first ever detection of cosmic-ray antideuterons, in particular as an indirect signature of dark matter annihilation or decay. In contrast to indirect dark matter searches using positrons, antiprotons, or gamma-rays, which suffer from relatively high and uncertain astrophysical backgrounds, searches with antideuterons benefit from very suppressed conventional backgrounds, offering a potential breakthrough in unexplored phase space for dark matter. This article is based on the first dedicated cosmic-ray antideuteron workshop, which was held at UCLA in June 2014. It reviews broad classes of dark matter candidates that result in detectable cosmic-ray antideuteron fluxes, as well as the status and prospects of cur rent experimental searches. The coalescence model of antideuteron production and the influence of antideuteron measurements at particle colliders are discussed. This is followed by a review of the modeling of antideuteron propagation through the magnetic fields, plasma currents, and molecular material of our Galaxy, the solar system, the Earth's geomagnetic field, and the atmosphere. Finally, the three ongoing or planned experiments that are sensitive to cosmic-ray antideuterons, BESS, AMS-02, and GAPS, are detailed. As cosmic-ray antideuteron detection is a rare event search, multiple experiments with orthogonal techniques and backgrounds are essential. Therefore, the combination of AMS-02 and GAPS antideuteron searches is highly desirable. Many theoretical and experimental groups have contributed to these studies over the last decade, this review aims to provide the first coherent discussion of the relevant dark matter theories that antideuterons probe, the challenges to predictions and interpretations of antideuteron signals, and the experimental efforts toward cosmic antideuteron detection. (C) 2016 Elsevier B.V. All rights reserved.
  • T. Aramaki, C. J. Hailey, S. E. Boggs, P. von Doetinchem, H. Fuke, S. I. Mognet, R. A. Ong, K. Perez, J. Zweerink
    ASTROPARTICLE PHYSICS, 74 6-13, Feb, 2016  Peer-reviewed
    The General Antiparticle Spectrometer (GAPS) is a novel approach for indirect dark matter searches that exploits cosmic antiparticles, especially antideuterons. The GAPS antideuteron measurement utilizes distinctive detection methods using atomic X-rays and charged particles from the decay of exotic atoms as well as the timing and stopping range of the incoming particle, which together provide excellent antideuteron identification. Prior to the future balloon experiment, an accelerator test and a prototype flight were successfully conducted in 2005 and 2012 respectively, in order to verify the GAPS detection concept. This paper describes how the sensitivity of GAPS to antideuterons was estimated using a Monte Carlo simulation along with the atomic cascade model and the Intra-Nuclear Cascade model. The sensitivity for the GAPS antideuteron search obtained using this method is 2.0 x10(-6) [m(-2)s(-1)sr(-1)(GeV/n)(-1) ] for the proposed long duration balloon program (LDB, 35 days x 3 flights), indicating that GAPS has a strong potential to probe a wide variety of dark matter annihilation and decay models through antideuteron measurements. GAPS is proposed to fly from Antarctica in the austral summer of 2019-2020. (C) 2015 Elsevier B.V. All rights reserved.
  • FUKE Hideyuki, MIYAZAKI Yoshiro, MORI Junichi, NAGAI Hiroki, NONOMURA Taku, OGAWA Hiroyuki, OKAZAKI Shun, OKUBO Takuma, OZAKI Shinji, SATO Daisuke, SHIMIZU Kensei, ABE Takumi, TAKAHASHI Katsumasa, TAKAHASHI Shun, YAMADA Noboru, YOSHIDA Takanori, DAIMARU Takuro, INOUE Takayoshi, KAWACHI Akiko, KAWAI Hiroki, MASUYAMA Yosuke, MATSUMIYA Hiroaki, MATSUMOTO Daishi
    TRANSACTIONS OF THE JAPAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES, AEROSPACE TECHNOLOGY JAPAN, 14(30) Pi_17-Pi_26, 2016  Peer-reviewed
    <p>A cooling system using oscillating heat pipe (OHP) has been developed for a balloon-borne astrophysics project GAPS (General Anti-Particle Spectrometer). Taking advantages of OHP, such as high conductivity, low-power, and suitability for spread heat source, OHP is planned to be used to cool the GAPS core detectors. OHP is a novel technique and it has never been utilized in practical use neither for a spacecraft nor for a balloon-craft, regardless of its many advantages. In these several years, we have investigated OHP's suitability for GAPS step by step. At first, we have succeeded in developing a scaleddown OHP model with a three-dimensional routing, which can operate in a wide temperature range around between 230 K and 300 K. We also succeeded in the first OHP flight demonstration with a prototype GAPS balloon experiment. Subsequently, we developed actual-sized OHP models with various routings. Numerical simulation models have been developed in parallel to further optimize the OHP design by understanding the OHP performance both macroscopically and microscopically. The design of the OHP check valve has been improved as well. This paper discusses the latest status of the GAPS-OHP development.</p>
  • O. Adriani, Y. Akaike, K. Asano, Y. Asaoka, M. G. Bagliesi, G. Bigongiari, W. R. Binns, S. Bonechi, M. Bongi, J. H. Buckley, G. Castellini, M. L. Cherry, G. Collazuol, K. Ebisawa, V. Di Felice, H. Fuke, T. G. Guzik, T. Hams, M. Hareyama, N. Hasebe, K. Hibino, M. Ichimura, K. Ioka, M. H. Israel, A. Javaid, E. Kamioka, K. Kasahara, J. Kataoka, R. Kataoka, Y. Katayose, N. Kawanaka, H. Kitamura, T. Kotani, H. S. Krawczynski, J. F. Krizmanic, A. Kubota, S. Kuramata, T. Lomtadze, P. Maestro, L. Marcelli, P. S. Marrocchesi, J. W. Mitchell, S. Miyake, K. Mizutani, A. A. Moiseev, K. Mori, M. Mori, N. Mori, H. M. Motz, K. Munakata, H. Murakami, Y. E. Nakagawa, S. Nakahira, J. Nishimura, S. Okuno, J. F. Ormes, S. Ozawa, F. Palma, P. Papini, B. F. Rauch, S. B. Ricciarini, T. Sakamoto, M. Sasaki, M. Shibata, Y. Shimizu, A. Shiomi, R. Sparvoli, P. Spillantini, I. Takahashi, M. Takayanagi, M. Takita, T. Tamura, N. Tateyama, T. Terasawa, H. Tomida, S. Torii, Y. Tunesada, Y. Uchihori, S. Ueno, E. Vannuccini, J. P. Wefel, K. Yamaoka, S. Yanagita, A. Yoshida, K. Yoshida, T. Yuda
    Journal of Physics: Conference Series, 632(1) 012023, Aug 13, 2015  Peer-reviewed
    © Published under licence by IOP Publishing Ltd. The CALorimetric Electron Telescope (CALET) is a space experiment, currently under development by Japan in collaboration with Italy and the United States, which will measure the flux of cosmic-ray electrons (and positrons) up to 20 TeV energy, of gamma rays up to 10 TeV, of nuclei with Z from 1 to 40 up to 1 PeV energy, and will detect gamma-ray bursts in the 7 keV to 20 MeV energy range during a 5 year mission. These measurements are essential to investigate possible nearby astrophysical sources of high energy electrons, study the details of galactic particle propagation and search for dark matter signatures. The main detector of CALET, the Calorimeter, consists of a module to identify the particle charge, followed by a thin imaging calorimeter (3 radiation lengths) with tungsten plates interleaving scintillating fibre planes, and a thick energy measuring calorimeter (27 radiation lengths) composed of lead tungstate logs. The Calorimeter has the depth, imaging capabilities and energy resolution necessary for excellent separation between hadrons, electrons and gamma rays. The instrument is currently being prepared for launch (expected in 2015) to the International Space Station ISS, for installation on the Japanese Experiment Module - Exposure Facility (JEM-EF).
  • Shun Okazaki, Hideyuki Fuke, Yoshiro Miyazaki, Hiroyuki Ogawa
    Journal of Astronomical Instrumentation, 03(02) 1440004-1440004, Nov, 2014  Peer-reviewed
    A meter-scale Oscillating Heat Pipe (OHP) has been developed for the General Anti-Particle Spectrometer (GAPS) project. Two types of OHP routing, U-shaped and O-shaped, have been investigated. For the operation at low temperature, R410A was used as the working fluid. As the result of the investigation, we verified for the first time that both the meter-scale U-shaped and O-shaped OHPs can transfer heat under gravity in a wide temperature range between 20°C and -60°C. Generally, the O-shaped OHP showed better performance than the U-shaped OHP. Both OHP models showed good thermal conductance and a good amount of heat transport under the particular sets of conditions which meet the design requirements. In order to clarify the drive force to operate OHP to further improve the OHP design, the performance difference between the U-shaped and the O-shaped models has been interpreted in terms of the gravity effect and the pressure loss.
  • T. Matsumura, Y. Akiba, J. Borrill, Y. Chinone, M. Dobbs, H. Fuke, A. Ghribi, M. Hasegawa, K. Hattori, M. Hattori, M. Hazumi, W. Holzapfel, Y. Inoue, K. Ishidoshiro, H. Ishino, H. Ishitsuka, K. Karatsu, N. Katayama, I. Kawano, A. Kibayashi, Y. Kibe, K. Kimura, N. Kimura, K. Koga, M. Kozu, E. Komatsu, A. Lee, H. Matsuhara, S. Mima, K. Mitsuda, K. Mizukami, H. Morii, T. Morishima, S. Murayama, M. Nagai, R. Nagata, S. Nakamura, M. Naruse, K. Natsume, T. Nishibori, H. Nishino, A. Noda, T. Noguchi, H. Ogawa, S. Oguri, I. Ohta, C. Otani, P. Richards, S. Sakai, N. Sato, Y. Sato, Y. Sekimoto, A. Shimizu, K. Shinozaki, H. Sugita, T. Suzuki, A. Suzuki, O. Tajima, S. Takada, S. Takakura, Y. Takei, T. Tomaru, Y. Uzawa, T. Wada, H. Watanabe, M. Yoshida, N. Yamasaki, T. Yoshida, K. Yotsumoto
    JOURNAL OF LOW TEMPERATURE PHYSICS, 176(5-6) 733-740, Sep, 2014  Peer-reviewed
    LiteBIRD is a next-generation satellite mission to measure the polarization of the cosmic microwave background (CMB) radiation. On large angular scales the B-mode polarization of the CMB carries the imprint of primordial gravitational waves, and its precise measurement would provide a powerful probe of the epoch of inflation. The goal of LiteBIRD is to achieve a measurement of the characterizing tensor to scalar ratio to an uncertainty of . In order to achieve this goal we will employ a kilo-pixel superconducting detector array on a cryogenically cooled sub-Kelvin focal plane with an optical system at a temperature of 4 K. We are currently considering two detector array options; transition edge sensor (TES) bolometers and microwave kinetic inductance detectors. In this paper we give an overview of LiteBIRD and describe a TES-based polarimeter designed to achieve the target sensitivity of 2 K arcmin over the frequency range 50-320 GHz.
  • T. Aramaki, S. E. Boggs, P. von Doetinchem, H. Fuke, C. J. Hailey, S. A. I. Mognet, R. A. Ong, K. Perez, J. Zweerink
    ASTROPARTICLE PHYSICS, 59 12-17, Jul, 2014  Peer-reviewed
    The general antiparticle spectrometer (GAPS) experiment is a proposed indirect dark matter search focusing on antiparticles produced by WIMP (weakly interacting massive particle) annihilation and decay in the Galactic halo. In addition to the very powerful search channel provided by antideuterons (Donato et al., 2000, 2008) [1,2], (Vittino et al.) [3], (Fornengo, 2013) [4], GAPS has a strong capability to measure low-energy antiprotons (0.07 &lt;= E &lt;= 0.25 GeV) as dark matter signatures. This is an especially effective means for probing light dark matter, whose existence has been hinted at in the direct dark matter searches, including the recent result from the CDMS-II experiment (Agnese, 2013) [5]. While severely constrained by LUX and other direct dark matter searches (Akerib et al.) [6], light dark matter candidates are still viable in an isospin-violating dark matter scenario and halo-independent analysis (Del Nobile et al.) [7,8]. Along with the excellent antideuteron sensitivity, GAPS will be able to detect an order of magnitude more low-energy antiprotons, compared to BESS (Abe et al., 2012) [9], (Onto et al., 2000) [10], PAMELA (Adriani et al., 2010) [11] and AMS-02 (Casaus, 2009) [12], providing a precision measurement of low-energy antiproton flux and a unique channel for probing light dark matter models. Additionally, dark matter signatures from gravitinos and Kaluza-Klein right-handed neutrinos as well as evidence of primordial black hole evaporation can be observed through low-energy antiproton search. (C) 2014 Elsevier B.V. All rights reserved.
  • P. von Doetinchem, T. Aramaki, N. Bando, S. E. Boggs, H. Fuke, F. H. Gahbauer, C. J. Hailey, J. E. Koglin, S. A. I. Mognet, N. Madden, S. Okazaki, R. A. Ong, K. M. Perez, T. Yoshida, J. Zweerink
    ASTROPARTICLE PHYSICS, 54 93-109, Feb, 2014  Peer-reviewed
    The General AntiParticle Spectrometer experiment (GAPS) is foreseen to carry out a dark matter search using low-energy cosmic ray antideuterons at stratospheric altitudes with a novel detection approach. A prototype flight from Taiki, Japan was carried out in June 2012 to prove the performance of the GAPS instrument subsystems (Lithium-drifted Silicon tracker and time-of-flight) and the thermal cooling concept as well as to measure background levels. The flight was a success and the stable flight operation of the GAPS detector concept was proven. During the flight about 10(6) charged particle triggers were recorded, extensive X-ray calibrations of the individual tracker modules were performed by using an onboard X-ray tube, and the background level of atmospheric and cosmic X-rays was measured. The behavior of the tracker performance as a function of temperature was investigated. The tracks of charged particle events were reconstructed and used to study the tracking resolution, the detection efficiency of the dacker, and coherent X-ray backgrounds. A timing calibration of the time-of-flight subsystem was performed to measure the particle velocity. The flux as a function of flight altitude and as a function of velocity was extracted taking into account systematic instrumental effects. The developed analysis techniques will form the basis for future flights. (C) 2013 Elsevier B.V. All rights reserved.
  • S. A. I. Mognet, T. Aramaki, N. Bando, S. E. Boggs, P. von Doetinchem, H. Fuke, F. H. Gahbauer, C. J. Hailey, J. E. Koglin, N. Madden, K. Mori, S. Okazaki, R. A. Ong, K. M. Perez, G. Tajiri, T. Yoshida, J. Zweerink
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 735 24-38, Jan, 2014  Peer-reviewed
    The General Antiparticle Spectrometer (GAPS) experiment is a novel approach for the detection of cosmic ray antiparticles. A prototype GAPS (pGAPS) experiment was successfully flown on a high-altitude balloon in June of 2012. The goals of the pGAPS experiment were: to test the operation of lithium drifted silicon (Si(Li)) detectors at balloon altitudes, to validate the thermal model and cooling concept needed for engineering of a full-size GAPS instrument, and to characterize cosmic ray and X-ray backgrounds. The instrument was launched from the Japan Aerospace Exploration Agency's (JAXA) Taiki Aerospace Research Field in Hokkaido, Japan. The flight lasted a total of 6 h, with over 3 h at float altitude ( similar to 33 km). Over one million cosmic ray triggers were recorded and all flight goals were met or exceeded. (C) 2013 Elsevier B.V. All rights reserved.
  • Fuke, Hideyuki, Iijima, Issei, Izutsu, Naoki, Matsuzaka, Yukihiko, Kato, Yoichi, Kakehashi, Yuya, Shoji, Yasuhiro, Yoshida, Tetsuya, Honda, Hideyuki, Aoki, Shuji, Inai, Yoichi, Inai, Yoichi, Morimoto, Shinji, Morimoto, Shinji
    Journal of Atmospheric and Oceanic Technology, 31(7) 1540-1548, 2014  Peer-reviewed
  • Hideyuki Fuke, Rene A Ong, Tsuguo Aramaki, Nobutaka Bando, Steven E Boggs, Philip v Doetinchem, Florian H Gahbauer, Charles J Hailey, Jason E Koglin, Norm Madden, Samuel Adam I Mognet, Kaya Mori, Shun Okazaki, Kerstin M Perez, Tetsuya Yoshida, Jeffrey Zweerink
    ADVANCES IN SPACE RESEARCH, 53(10) 1432-1437, Mar 2, 2013  
    The General Anti-Particle Spectrometer (GAPS) project is being carried out to search for primary cosmic-ray antiparticles especially for antideuterons produced by cold dark matter. GAPS plans to realize the science observation by Antarctic long duration balloon flights in the late 2010s. In preparation for the Antarctic science flights, an engineering balloon flight using a prototype of the GAPS instrument, "pGAPS", was successfully carried out in June 2012 in Japan to verify the basic performance of each GAPS subsystem. The outline of the pGAPS flight campaign is briefly reported.

Misc.

 257
  • 水越彗太, 福家英之, 小川博之, 岡崎峻, 高橋俊, 山谷昌大, 吉田哲也, 清水雄輝, 入江優花, 永井大洋, 鈴木俊介, 佐々木文哉, 和田拓也, 吉田篤正, 小財正義, 加藤千尋, 宗像一起, 平井克樹, 河内明子, 川本裕樹, 木間快, 奈良祥太朗, 清水望, Chuck Hailey, Mirko Boezio, GAPS Collaboration
    日本物理学会2024年春季大会, 20aV1-11, Mar 20, 2024  
  • 鳥居祥二, 赤池陽水, 小林兼好, 田村忠久, 森正樹, 浅岡陽一, 浅野勝晃, 福家英之, 日比野欣也, 市村雅一, 笠原克昌, 片岡龍峰, 片寄祐作, 加藤千尋, 川久保雄太, 三宅晶子, MOTZ Holger, 宗像一起, 中平聡志, 奥野祥二, 小沢俊介, 坂本貴紀, 清水雄輝, 塩見昌司, 常定芳基, 山岡和貴, 柳田昭平, 吉田篤正, 吉田健二, 他CALETチーム
    日本物理学会2024年春季大会, 18aW3-1, Mar 18, 2024  
  • 平井克樹, 川本裕樹, 奈良祥太朗, 高橋俊, 河内明子, 岡崎峻, 福家英之
    第37回数値流体力学シンポジウム, 1401-05-05, Dec 15, 2023  
  • 森英之, 八木邑磨, 丹野茉莉枝, 長島加奈, 福家英之
    宇宙航空研究開発機構宇宙科学研究所大気球シンポジウム (2023年度), isas23-sbs-045, Oct 24, 2023  
  • 菅原敏, 森本真司, 青木周司, 本田秀之, 中澤高清, 豊田栄, 石戸谷重之, 後藤大輔, 梅澤拓, 長谷部文雄, 石島健太郎, 飯嶋一征, 福家英之
    宇宙航空研究開発機構宇宙科学研究所大気球シンポジウム (2023年度), isas23-sbs-037, Oct 24, 2023  

Presentations

 130

Professional Memberships

 2

Research Projects

 12

● 指導学生等の数

 5
  • Fiscal Year
    2020年度(FY2020)
    Doctoral program
    1
    Master’s program
    2
    Students under Cooperative Graduate School System
    3
    Students under Skills Acquisition System
    2
  • Fiscal Year
    2019年度(FY2019)
    Doctoral program
    1
    Master’s program
    4
    Students under Cooperative Graduate School System
    4
    Students under Skills Acquisition System
    4
  • Fiscal Year
    2018年度(FY2018)
    Doctoral program
    1
    Master’s program
    2
    Students under Cooperative Graduate School System
    3
    Students under Commissioned Guidance Student System
    1
    Students under Skills Acquisition System
    2
  • Fiscal Year
    2021年度(FY2021)
    Doctoral program
    1
    Master’s program
    2
    Students under Cooperative Graduate School System
    2
    Students under Skills Acquisition System
    3
  • Fiscal Year
    2022年度(FY2022)
    Doctoral program
    1
    Students under Skills Acquisition System
    3
    Others
    2

● 専任大学名

 1
  • Affiliation (university)
    総合研究大学院大学(SOKENDAI)

● 所属する所内委員会

 4
  • ISAS Committee
    宇宙理学委員会
  • ISAS Committee
    大気球専門委員会
  • ISAS Committee
    観測ロケット専門委員会
  • ISAS Committee
    大樹航空宇宙実験場連絡会