宇宙科学広報・普及主幹付

Iku SHINOHARA

  (篠原 育)

Profile Information

Affiliation
Professor, Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency
Degree
Ph.D(The University of Tokyo)

J-GLOBAL ID
200901025081752002
researchmap Member ID
5000018897

Papers

 236
  • S. Imajo, Y. Miyoshi, Y. Kazama, K. Asamura, I. Shinohara, K. Shiokawa, Y. Kasahara, Y. Kasaba, A. Matsuoka, S.‐Y. Wang, S. W. Y. Tam, T.‐F. Chang, B.‐J. Wang, C.‐W. Jun, M. Teramoto, S. Kurita, F. Tsuchiya, A. Kumamoto, K. Saito, T. Hori
    Journal of Geophysical Research: Space Physics, 129(9), Sep 12, 2024  
    Abstract The Arase satellite observed the precipitation of monoenergetic electrons accelerated from a very high altitude above 32,000 km altitude on 16 September 2017. The event was selected in the period when the high‐angular resolution channel of the electron detector looked at pitch angles within ∼5° from the ambient magnetic field direction, and thereby was the first to examine the detailed distribution of electron flux near the energy‐dependent loss cone at such high altitudes. The potential energy below the satellite estimated from the observed energy‐dependence of the loss cone was consistent with the energy of the upgoing ion beams, indicating that ionospheric ions were accelerated by a lower‐altitude acceleration region. The accelerated electrons inside the loss cone carried a significant net field‐aligned current (FAC) density corresponding to ionospheric‐altitude FAC of up to ∼3μA/m2. Based on the anisotropy of the accelerated electrons, we estimated the height of the upper boundary of the acceleration region to be >∼2 RE above the satellite. The height distribution of the acceleration region below the satellite, estimated from the frequency of auroral kilometric radiation, was ∼4,000–13,000 km altitude, suggesting that the very‐high‐altitude acceleration region was separated from the lower acceleration region. Additionally, we observed time domain structure (TDS) electric fields on a subsecond time scale with a thin FAC indicated by magnetic deflections. Such a TDS may be generated by the formation of double layers in the magnetotail, and its potential drop could significantly contribute (∼40%–60%) to the parallel energization of precipitating auroral electrons.
  • Rui Chen, Yoshizumi Miyoshi, Xinliang Gao, Quanming Lu, Bruce T. Tsurutani, Keisuke Hosokawa, Tomoaki Hori, Yasunobu Ogawa, Shin‐Ichiro Oyama, Yoshiya Kasahara, Shoya Matsuda, Satoko Nakamura, Ayako Matsuoka, Iku Shinohara
    Geophysical Research Letters, 51(16), Aug 15, 2024  
    Abstract We report an Arase‐all sky imager (ASI) conjugate event in which the pulsating aurora (PsA) has a one‐to‐one correspondence with chorus bursts. Wavelet analysis displayed three peaks at ∼0.3 Hz, 4 Hz, and >10 Hz, corresponding to the main pulsation, internal modulation, and fast modulation, respectively. These correspond to the old terms of ∼5–15 s pulsations, chorus risers/elements and subelements/subpackets, respectively. Electron “microbursts” correspond to the 4‐Hz peak. The internal and fast modulations are further verified by the analysis based on fast Fourier transform analyses. Moreover, the spatial distributions of the Fourier spectral amplitude show that the internal and fast modulations are well‐structured within auroral patches. The above results indicate a paradigm shift away from quasilinear theory which implicitly assumes diffuse wave generation. The three time‐scale modulations are consistent with coherent chorus which has been theoretically argued to lead to pitch angle transport three orders of magnitude faster.
  • Tomoe Taki, Satoshi Kurita, Airi Shinjo, Ibuki Fukasawa, Satoko Nakamura, Hirotsugu Kojima, Yoshiya Kasahara, Shoya Matsuda, Ayako Matsuoka, Yoshizumi Miyoshi, Iku Shinohara
    Earth, Planets and Space, 76(1), Aug 5, 2024  
    Abstract We analyzed electrostatic electron cyclotron harmonic waves observed by the interferometry observation mode of the Arase satellite. It is found that the magnitude of the phase difference varies with the satellite spin. The spin dependence of this phase difference was investigated by examining the trend of the spin dependence for the 84 events of interferometry observation of ECH waves. We found that they are divided into two categories. One is that the phase difference tends to show sinusoidal variations as a function of the angle $$\gamma _B$$ between the ambient magnetic field projected on the spin plane and the electric field sensor. The other is that the phase difference is close to zero and does not depend on $$\gamma _B$$. A numerical model of interferometry observation of single plane wave is constructed to explain the observed phase differences. We performed the numerical calculations when the background magnetic field was oriented in the direction often observed in the Arase satellite. The result of the calculations shows the wave vector direction relates to the spin angle with the maximum phase difference. Using this relation, we show that it may be possible to estimate the wave vector direction of ECH waves from one-dimensional interferometry data. This is expected to enable more accurate estimates of phase velocity. Graphical Abstract
  • Y. Ito, K. Hosokawa, Y. Ogawa, Y. Miyoshi, F. Tsuchiya, M. Fukizawa, Y. Kasaba, Y. Kazama, S. Oyama, K. Murase, S. Nakamura, Y. Kasahara, S. Matsuda, S. Kasahara, T. Hori, S. Yokota, K. Keika, A. Matsuoka, M. Teramoto, I. Shinohara
    Journal of Geophysical Research: Space Physics, 129(7), Jul 16, 2024  
    Abstract Pulsating Aurora (PsA) is one of the major classes of diffuse aurora associated with precipitation of a few to a few tens of keV electrons from the magnetosphere. Recent studies suggested that, during PsA, more energetic (i.e., sub‐relativistic/relativistic) electrons precipitate into the ionosphere at the same time. Those electrons are considered to be scattered at the higher latitude part of the magnetosphere by whistler‐mode chorus waves propagating away from the magnetic equator. However, there have been no actual cases of simultaneous observations of precipitating electrons causing PsA (PsA electrons) and chorus waves propagating toward higher latitudes; thus, we still do not quite well understand under what conditions PsA electrons become harder and precipitate to lower altitudes. To address this question, we have investigated an extended interval of PsA on 12 January 2021, during which simultaneous observations with the Arase satellite, ground‐based all‐sky imagers and the European Incoherent SCATter (EISCAT) radar were conducted. We found that, when the PsA shape became patchy, the PsA electron energy increased and Arase detected intense chorus waves at magnetic latitudes above 20°, indicating the propagation of chorus waves up to higher latitudes along the field line. A direct comparison between the irregularities of the magnetospheric electron density and the emission intensity of PsA patches at the footprint of the satellite suggests that the PsA morphology and the energy of PsA electrons are determined by the presence of “magnetospheric density ducts,” which allow chorus waves to travel to higher latitudes and thereby precipitate more energetic electrons.
  • Tomoe Taki, Satoshi Kurita, Hirotsugu Kojima, Yoshiya Kasahara, Shoya Matsuda, Ayako Matsuoka, Yoichi Kazama, Chae‐Woo Jun, Shiang‐Yu Wang, Sunny W. Y. Tam, Tzu‐Fang Chang, Bo‐Jhou Wang, Yoshizumi Miyoshi, Iku Shinohara
    Radio Science, 59(6), Jun 11, 2024  
    Abstract We have analyzed Electrostatic Electron Cyclotron Harmonic (ECH) waves observed using interferometry observation mode performed by the Arase satellite to estimate low‐energy electron temperatures. Interferometry can be used to calculate velocities, but the Arase satellite can only perform interferometry observations in a one‐dimensional direction. We proposed a method to estimate the wave vector of the observed ECH waves from the observed electric fields and calculated the phase velocity for each frequency. We determined the particle parameters from the particle detector and the upper hybrid resonance and estimated the unknown low‐energy electron temperature from the agreement between the observed ECH dispersion relation and the theoretical dispersion curves. We performed our analysis for six events and found that the low‐energy electron temperature in the observed region is on the order of 1 eV.

Misc.

 77

Research Projects

 17