惑星分光観測衛星プロジェクトチーム

Masayoshi Kozai

  (小財 正義)

Profile Information

Affiliation
Project researcher, Joint Support-Center for Data Science Research, Polar Environment Data Science Center, Research Organization of Information and Systems
Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency
Degree
博士(理学)(Mar, 2016, 信州大学)

J-GLOBAL ID
201901017116726616
researchmap Member ID
B000376637

Cross-disciplinary research data publication system AMIDER

https://amider.rois.ac.jp/


Awards

 1

Papers

 96
  • M. Kozai, Y. Hayashi, K. Fujii, K. Munakata, C. Kato, N. Miyashita, A. Kadokura, R. Kataoka, S. Miyake, M. L. Duldig, J. E. Humble, K. Iwai
    Sep 5, 2024  
    The north-south (NS) anisotropy of galactic cosmic rays (GCRs) is dominated by a diamagnetic drift flow of GCRs in the interplanetary magnetic field (IMF), allowing us to derive key parameters of cosmic-ray propagation, such as the density gradient and diffusion coefficient. We propose a new method to analyze the rigidity spectrum of GCR anisotropy and reveal a solar cycle variation of the NS anisotropy's spectrum using ground-based muon detectors in Nagoya, Japan, and Hobart, Australia. The physics-based correction method for the atmospheric temperature effect on muons is used to combine the different-site detectors free from local atmospheric effects. NS channel pairs in the multi-directional muon detectors are formed to enhance sensitivity to the NS anisotropy, and in this process, general graph matching in graph theory is introduced to survey optimized pairs. Moreover, Bayesian estimation with the Gaussian process allows us to unfold the rigidity spectrum without supposing any analytical function for the spectral shape. Thanks to these novel approaches, it has been discovered that the rigidity spectrum of the NS anisotropy is dynamically varying with solar activity every year. It is attributed to a rigidity-dependent variation of the radial density gradient of GCRs based on the nature of the diamagnetic drift in the IMF. The diffusion coefficient and mean-free-path length of GCRs as functions of the rigidity are also derived from the diffusion-convection flow balance. This analysis expands the estimation limit of the mean-free-path length into $\le200$ GV rigidity region from $<10$ GV region achieved by solar energetic particle observations.
  • Masayoshi Kozai, Yoshimasa Tanaka, Shuji Abe, Yasuyuki Minamiyama, Atsuki Shinbori, Akira Kadokura
    Aug 5, 2024  
    The AMIDER, Advanced Multidisciplinary Integrated-Database for Exploring new Research, is a newly developed research data catalog to demonstrate an advanced database application. AMIDER is characterized as a multidisciplinary database equipped with a user-friendly web application. Its catalog view displays diverse research data at once beyond any limitation of each individual discipline. Some useful functions, such as a selectable data download, data format conversion, and display of data visual information, are also implemented. Further advanced functions, such as visualization of dataset mutual relationship, are also implemented as a preliminary trial. These characteristics and functions are expected to enhance the accessibility to individual research data, even from non-expertized users, and be helpful for collaborations among diverse scientific fields beyond individual disciplines. Multidisciplinary data management is also one of AMIDER's uniqueness, where various metadata schemas can be mapped to a uniform metadata table, and standardized and self-describing data formats are adopted. AMIDER website (https://amider.rois.ac.jp/) had been launched in April 2024. As of July 2024, over 15,000 metadata in various research fields of polar science have been registered in the database, and approximately 500 visitors are viewing the website every day on average. Expansion of the database to further multidisciplinary scientific fields, not only polar science, is planned, and advanced attempts, such as applying Natural Language Processing (NLP) to metadata, have also been considered.
  • A.Stoessl, for the GAPS collaboration, T.Aramaki, M.Boezio, S.E.Boggs, V.Bonvicini, G.Bridges, D.Campana, W.W.Craig, P.v.Doetinchem, E.Everson, L.Fabris, S.N.Feldman, H.Fuke, F.Gahbauer, C.Gerrity, L.Ghislotti, C.J.Hailey, T.Hayashi, A.Kawachi, M.Kozai, M.Law, P.Lazzaroni, A.Lenni, A.Lowell, M.Manghisoni, N.Marcelli, K.Mizukoshi, E.Mocchiutti, B.Mochizuki, S.A.I.Mogne, K.Munakata, R.Munini, S.Okazaki, J.Olson, R.A.Ong, G.Osteria, K.Perez, F.Perfetto, S.Quinn, V.Re, E.Riceputi, B.Roach, F.Rogers, J.L.Ryan, N.Saffold, V.Scotti, Y.Shimizu, K.Shu, R.Sparvoli, A.Stoessl, A.Tiberio, E.Vannuccini, M.Xiao, M.Yamatani, K.Yee, T.Yoshida, G.Zampa, J.Zeng, J.Zweerink
    Proceedings of 38th International Cosmic Ray Conference — PoS(ICRC2023), Sep 27, 2023  
  • M. Amenomori, S. Asano, Y. W. Bao, X. J. Bi, D. Chen, T. L. Chen, W. Y. Chen, Xu Chen, Y. Chen, Cirennima, S. W. Cui, Danzengluobu, L. K. Ding, J. H. Fang, K. Fang, C. F. Feng, Zhaoyang Feng, Z. Y. Feng, Qi Gao, A. Gomi, Q. B. Gou, Y. Q. Guo, Y. Y. Guo, Y. Hayashi, H. H. He, Z. T. He, K. Hibino, N. Hotta, Haibing Hu, H. B. Hu, K. Y. Hu, J. Huang, H. Y. Jia, L. Jiang, P. Jiang, H. B. Jin, K. Kasahara, Y. Katayose, C. Kato, S. Kato, I. Kawahara, T. Kawashima, K. Kawata, M. Kozai, D. Kurashige, Labaciren, G. M. Le, A. F. Li, H. J. Li, W. J. Li, Y. Li, Y. H. Lin, B. Liu, C. Liu, J. S. Liu, L. Y. Liu, M. Y. Liu, W. Liu, H. Lu, X. R. Meng, Y. Meng, K. Munakata, K. Nagaya, Y. Nakamura, Y. Nakazawa, H. Nanjo, C. C. Ning, M. Nishizawa, R. Noguchi, M. Ohnishi, S. Okukawa, S. Ozawa, X. Qian, X. L. Qian, X. B. Qu, T. Saito, Y. Sakakibara, M. Sakata, T. Sako, T. K. Sako, T. Sasaki, J. Shao, M. Shibata, A. Shiomi, H. Sugimoto, W. Takano, M. Takita, Y. H. Tan, N. Tateyama, S. Torii, H. Tsuchiya, S. Udo, H. Wang, S. F. Wang, Y. P. Wang, Wangdui, H. R. Wu, Q. Wu, J. L. Xu, L. Xue, Z. Yang, Y. Q. Yao, J. Yin, Y. Yokoe, Y. L. Yu, A. F. Yuan, L. M. Zhai, H. M. Zhang, J. L. Zhang, X. Zhang, X. Y. Zhang, Y. Zhang, Yi Zhang, Ying Zhang, S. P. Zhao, Zhaxisangzhu, X. X. Zhou, Y. H. Zou
    The Astrophysical Journal, 954(2) 200-200, Sep 1, 2023  Peer-reviewed
    Abstract Gamma rays from HESS J1849−000, a middle-aged TeV pulsar wind nebula (PWN), are observed by the Tibet air shower array and the muon detector array. The detection significance of gamma rays reaches 4.0σ and 4.4σ levels above 25 TeV and 100 TeV, respectively, in units of the Gaussian standard deviation σ. The energy spectrum measured between 40 TeV &lt; E &lt; 320 TeV for the first time is described with a simple power-law function of ${dN}/{dE}={(2.86\pm 1.44)\times {10}^{-16}(E/40\,\mathrm{TeV})}^{-2.24\pm 0.41}\,{\mathrm{TeV } }^{-1}\,{\mathrm{cm } }^{-2}\,{ { \rm{s } } }^{-1}$. The gamma-ray energy spectrum from the sub-TeV (E &lt; 1 TeV) to sub-PeV (100 TeV &lt; E &lt; 1 PeV) ranges, including the results of previous studies, can be modeled with the leptonic scenario, i.e., inverse Compton scattering by high-energy electrons accelerated by the PWN of PSR J1849−0001. On the other hand, the gamma-ray energy spectrum can also be modeled with the hadronic scenario in which gamma rays are generated from the decay of neutral pions produced by collisions between accelerated cosmic-ray protons and the ambient molecular cloud found in the gamma-ray-emitting region. The cutoff energy of cosmic-ray protons Ep,cut is estimated as ${\mathrm{log } }_{10}({E}_{ { \rm{p } },\mathrm{cut } }/\mathrm{TeV})={3.73}_{-0.66}^{+2.98}$, suggesting that protons are accelerated up to the PeV energy range. Our study thus proposes that HESS J1849−000 should be further investigated as a new candidate as a Galactic PeV cosmic-ray accelerator, or “PeVatron.”
  • Chihiro Kato, Kazuoki Munakata, Ryuho Kataoka, Shoko Miyake, Masayoshi Kozai, Yuki Hayashi, Yoshiki Masuda, Mizuki Matsumoto
    Proceedings of 38th International Cosmic Ray Conference — PoS(ICRC2023), Aug 18, 2023  

Presentations

 89

Professional Memberships

 6

Works

 1

Research Projects

 9

Academic Activities

 14

Social Activities

 1