Profile Information
- Affiliation
- Associate Professor, Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency
- J-GLOBAL ID
- 201901015283902873
- researchmap Member ID
- B000362527
Research History
1-
May, 2023 - Present
Papers
66-
Icarus, 420, Sep 15, 2024Various natural effects gradually alter the surfaces of asteroids exposed to the space environment. These processes are collectively known as space weathering. The influence of space weathering on the observed spectra of C-complex asteroids remains uncertain. This has long hindered our understanding of their composition and evolution through ground-based telescope observations. Proximity observations of (162173) Ryugu by the telescopic Optical Navigation Camera (ONC-T) onboard Hayabusa2 and that of (101955) Bennu by MapCam onboard Origins, Spectral Interpretation, Resource Identification, and Security-Regolith Explorer (OSIRIS-REx) found opposite spectral trends of space weathering; Ryugu darkened and reddened while Bennu brightened and blued. How the spectra of Ryugu and Bennu evolved relative to each other would place an important constraint for understanding their mutual relationship and differences in their origins and evolutions. In this study, we compared the space weathering trends on Ryugu and Bennu by applying the results of cross calibration between ONC-T and MapCam obtained in our companion paper. We show that the average Bennu surface is brighter by 18.0 ± 1.5% at v band (550 nm) and bluer by 0.18 ± 0.03 μm−1 (in the 480–850 nm spectral slope) than Ryugu. The spectral slopes of surface materials are more uniform on Bennu than on Ryugu at spatial scales larger than ∼1 m, but Bennu is more heterogeneous at scales below ∼1 m. This suggests that lateral mixing of surface materials due to resurfacing processes may have been more efficient on Bennu. The reflectance−spectral slope distributions of craters on Ryugu and Bennu appeared to follow two parallel trend lines with an offset before cross calibration, but they converged to a single straight trend without a bend after cross calibration. We show that the spectra of the freshest craters on Ryugu and Bennu are indistinguishable within the uncertainty of cross calibration. These results suggest that Ryugu and Bennu initially had similar spectra before space weathering and that they evolved in completely opposite directions along the same trend line, subsequently evolving into asteroids with different disk-averaged spectra. These findings further suggest that space weathering likely expanded the spectral slope variation of C-complex asteroids, implying that they may have formed from materials with more uniform spectral slopes.
-
Icarus, 417 116122-116122, Jul, 2024
-
Science (New York, N.Y.), 379(6634) eabo0431, Feb 24, 2023The near-Earth carbonaceous asteroid (162173) Ryugu is expected to contain volatile chemical species that could provide information on the origin of Earth's volatiles. Samples of Ryugu were retrieved by the Hayabusa2 spacecraft. We measured noble gas and nitrogen isotopes in Ryugu samples and found that they are dominated by presolar and primordial components, incorporated during Solar System formation. Noble gas concentrations are higher than those in Ivuna-type carbonaceous (CI) chondrite meteorites. Several host phases of isotopically distinct nitrogen have different abundances among the samples. Our measurements support a close relationship between Ryugu and CI chondrites. Noble gases produced by galactic cosmic rays, indicating a ~5 million year exposure, and from implanted solar wind record the recent irradiation history of Ryugu after it migrated to its current orbit.
-
Science (New York, N.Y.), 379(6634) eabn9033, Feb 24, 2023The Hayabusa2 spacecraft collected samples from the surface of the carbonaceous near-Earth asteroid (162173) Ryugu and brought them to Earth. The samples were expected to contain organic molecules, which record processes that occurred in the early Solar System. We analyzed organic molecules extracted from the Ryugu surface samples. We identified a variety of molecules containing the atoms CHNOS, formed by methylation, hydration, hydroxylation, and sulfurization reactions. Amino acids, aliphatic amines, carboxylic acids, polycyclic aromatic hydrocarbons, and nitrogen-heterocyclic compounds were detected, which had properties consistent with an abiotic origin. These compounds likely arose from an aqueous reaction on Ryugu's parent body and are similar to the organics in Ivuna-type meteorites. These molecules can survive on the surfaces of asteroids and be transported throughout the Solar System.
-
Science Advances, 8(46), Nov, 2022The Hayabusa2 spacecraft returned to Earth from the asteroid 162173 Ryugu on 6 December 2020. One day after the recovery, the gas species retained in the sample container were extracted and measured on-site and stored in gas collection bottles. The container gas consists of helium and neon with an extraterrestrial 3He/4He and 20Ne/22Ne ratios, along with some contaminant terrestrial atmospheric gases. A mixture of solar and Earth’s atmospheric gas is the best explanation for the container gas composition. Fragmentation of Ryugu grains within the sample container is discussed on the basis of the estimated amount of indigenous He and the size distribution of the recovered Ryugu grains. This is the first successful return of gas species from a near-Earth asteroid.
Misc.
75-
Detailed Design of the Data processing and ARchiving System for Martian Moons eXploration (MMX-DARS)宇宙科学技術連合講演会講演集(CD-ROM), 67th, 2023
-
日本地球惑星科学連合大会予稿集(Web), 2023, 2023
-
Detailed Design of the Data processing and ARchiving System for Martian Moons Exploration (MMX-DARS)宇宙科学技術連合講演会講演集(CD-ROM), 66th, 2022
-
宇宙科学技術連合講演会講演集(CD-ROM), 66th, 2022
-
宇宙科学技術連合講演会講演集(CD-ROM), 65th, 2021
Research Projects
3-
Grants-in-Aid for Scientific Research, Japan Society for the Promotion of Science, Apr, 2013 - Mar, 2015
-
Grants-in-Aid for Scientific Research, Japan Society for the Promotion of Science, 2011 - 2012
-
科学研究費助成事業, 日本学術振興会, 1999 - 2001