Curriculum Vitaes

Daiki Yamasaki

  (山崎 大輝)

Profile Information

Affiliation
Specially Appointed Assistant Professor, Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency
Degree
Ph.D. in Science(Mar, 2023, Kyoto University)

Contact information
yamasaki.daikijaxa.jp
Researcher number
30980445
ORCID ID
 https://orcid.org/0000-0003-1072-3942
J-GLOBAL ID
202301012506533151
researchmap Member ID
R000049353

External link

Papers

 9
  • Kouhei Teraoka, Daiki Yamasaki, Yusuke Kawabata, Shinsuke Imada, Toshifumi Shimizu
    The Astrophysical Journal, 983(2) 126-126, Apr 15, 2025  Peer-reviewed
    Abstract Unstable states of the solar coronal magnetic field structure result in various flare behaviors. In this study, we compared the confined and eruptive flares that occurred under similar magnetic circumstances in the active region 12673, on 2017 September 6, using the twist number, decay index, and height of magnetic field lines to identify observational behaviors of the flare eruption. We investigated the parameters from the magnetic field lines involved in an initial energy release, which were identified from the positions of the core of flare ribbons, i.e., flare kernels. The magnetic field lines were derived by nonlinear force-free field modeling calculated from the photospheric vector magnetic field obtained by the Solar Dynamics Observatory SDO/Helioseismic and Magnetic Imager, and flare kernels were identified from the 1600 Å data obtained by the SDO/Atmospheric Imaging Assembly. The twist number of all the magnetic field lines in the confined flare was below 0.6; however, the twist number in seven out of 24 magnetic field lines in the eruptive flare was greater than 0.6. These lines were tall. It is found that the decay index is not a clear discriminator of the confined and eruptive flares. Our study suggests that some magnetic field lines in the kink instability state may be important for eruptive flares, and that taller magnetic field lines may promote flare eruption.
  • Kiyoshi Ichimoto, Yuki Hashimoto, Yuwei Huang, Ayumi Asai, Haruhi Shirato, Yuta Yamazoe, Kentaro Kusuno, Satoru Ueno, Daiki Yamasaki
    The Astrophysical Journal, Aug 1, 2024  Peer-reviewedLast author
  • Tomoko KAWATE, Haruhisa NAKANO, Yuwei HUANG, Daiki YAMASAKI, Kiyoshi ICHIMOTO, Motoshi GOTO, Satoru UENO, Goichi KIMURA, Joseph J. SIMONS, Yasuko KAWAMOTO
    Plasma and Fusion Research, 18 1401037-1401037, May 23, 2023  Peer-reviewed
  • Daiki Yamasaki, Yu Wei Huang, Yuki Hashimoto, Denis P Cabezas, Tomoko Kawate, Satoru UeNo, Kiyoshi Ichimoto
    Publications of the Astronomical Society of Japan, Apr 29, 2023  Peer-reviewedLead authorCorresponding author
    Solar filaments are dense and cool plasma clouds in the solar corona. They are supposed to be supported in a dip of coronal magnetic field. However, the models are still under argument between two types of the field configuration; one is the normal polarity model proposed by Kippenhahn & Schlueter (1957), and the other is the reverse polarity model proposed by Kuperus & Raadu (1974). To understand the mechanism that the filaments become unstable before the eruption, it is critical to know the magnetic structure of solar filaments. In this study, we performed the spectro-polarimetric observation in the He I (10830 angstrom) line to investigate the magnetic field configuration of dark filaments. The observation was carried out with the Domeless Solar Telescope at Hida Observatory with a polarization sensitivity of 3.0x10^-4. We obtained 8 samples of filaments in quiet region. As a result of the analysis of full Stokes profiles of filaments, we found that the field strengths were estimated as 8 - 35 Gauss. By comparing the direction of the magnetic field in filaments and the global distribution of the photospheric magnetic field, we determined the magnetic field configuration of the filaments, and we concluded that 1 out of 8 samples have normal polarity configuration, and 7 out of 8 have reverse polarity configuration.
  • Yuji Kotani, Takako T. Ishii, Daiki Yamasaki, Kenichi Otsuji, Kiyoshi Ichimoto, Ayumi Asai, Kazunari Shibata
    Monthly Notices of the Royal Astronomical Society, 522(3) 4148-4160, Apr 27, 2023  Peer-reviewed
    Small flares frequently occur in the quiet Sun. Previous studies have noted that they share many common characteristics with typical solar flares in active regions. However, their similarities and differences are not fully understood, especially their thermal properties. In this study, we performed imaging spectroscopic observations in the H$\alpha$ line taken with the Solar Dynamics Doppler Imager on the Solar Magnetic Activity Research Telescope (SMART/SDDI) at the Hida Observatory and imaging observations with the Atmospheric Imaging Assembly onboard Solar Dynamics Observatory (SDO/AIA). We analysed 25 cases of small flares in the quiet Sun over the thermal energy range of $10^{24}-10^{27}\,\mathrm{erg}$, paying particular attention to their thermal properties. Our main results are as follows: (1) We observe a redshift together with line centre brightening in the H$\alpha$ line associated with more than half of the small flares. (2) We employ differential emission measure analysis using AIA multi-temperature (channel) observations to obtain the emission measure and temperature of the small flares. The results are consistent with the Shibata & Yokoyama (1999, 2002) scaling law. From the scaling law, we estimated the coronal magnetic field strength of small flares to be 5 --15 G. (3) The temporal evolution of the temperature and the density shows that the temperature peaks precede the density peaks in more than half of the events. These results suggest that chromospheric evaporations/condensations play an essential role in the thermal properties of some of the small flares in the quiet Sun, as does for large flares.

Misc.

 5

Presentations

 51

Teaching Experience

 2
  • Apr, 2025 - Sep, 2025
    Physics I  (Aoyama Gakuin University)
  • Apr, 2024 - Sep, 2024
    Physics I  (Aoyama Gakuin University)

Professional Memberships

 5

Research Projects

 3

Academic Activities

 6

Major Social Activities

 5