研究者業績

マツダ フレドリック タカユキ

マツダ フレドリック タカユキ  (Frederick Takayuki MATSUDA)

基本情報

所属
国立研究開発法人宇宙航空研究開発機構 宇宙科学研究所 宇宙物理学研究系 特任助教
学位
Ph.D.(2017年6月 University of California, San Diego)

研究者番号
40867032
ORCID ID
 https://orcid.org/0000-0003-0041-6447
J-GLOBAL ID
201901016586407138
researchmap会員ID
B000373123

受賞

 2

論文

 68
  • Frederick T. Matsuda, Ryo Nagata, Kimihide Odagiri, Shugo Oguri, Yutaro Sekimoto, Hayato Takakura, Tommaso Ghigna
    Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave 82-82 2024年8月23日  
  • Hayato Takakura, Yutaro Sekimoto, Kimihide Odagiri, Rion Takahashi, Fumiya Miura, Frederick T. Matsuda, Shugo Oguri
    Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave 207-207 2024年8月23日  
  • Fumiya Miura, Hayato Takakura, Yutaro Sekimoto, Junji Inatani, Frederick T. Matsuda, Shugo Oguri, Miu Kashiwazaki, Shogo Nakamura, Tomonaga Ueno, Akira Ito, Motoi Kawamura, Osamu Kawasaki, Atsushi Sakai
    Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy XII 124-124 2024年8月16日  
  • Rion Takahashi, Hayato Takakura, Yutaro Sekimoto, Fumiya Miura, Junji Inatani, Frederick T. Matsuda, Shugo Oguri, Shogo Nakamura
    Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy XII 120-120 2024年8月16日  
  • Fumiya Miura, Hayato Takakura, Yutaro Sekimoto, Junji Inatani, Frederick Matsuda, Shugo Oguri, Shogo Nakamura
    Applied Optics 2024年8月8日  
  • Daisuke Kaneko, Sayuri Takatori, Masaya Hasegawa, Masashi Hazumi, Yuki Inoue, Oliver Jeong, Nobuhiko Katayama, Adrian T. Lee, Frederick Matsuda, Haruki Nishino, Praween Siritanasak, Aritoki Suzuki, Satoru Takakura, Takayuki Tomaru
    Journal of Astronomical Telescopes, Instruments, and Systems 10(01) 2024年1月27日  
  • Masaaki Murata, Hironobu Nakata, Kengo Iijima, Shunsuke Adachi, Yudai Seino, Kenji Kiuchi, Frederick Matsuda, Michael J. Randall, Kam Arnold, Nicholas Galitzki, Bradley R. Johnson, Brian Keating, Akito Kusaka, John B. Lloyd, Joseph Seibert, Maximiliano Silva-Feaver, Osamu Tajima, Tomoki Terasaki, Kyohei Yamada
    Review of Scientific Instruments 94(12) 2023年12月1日  
    For cosmic microwave background (CMB) polarization observations, calibration of detector polarization angles is essential. We have developed a fully remote controlled calibration system with a sparse wire grid that reflects linearly polarized light along the wire direction. The new feature is a remote-controlled system for regular calibration, which has not been possible in sparse wire grid calibrators in past experiments. The remote control can be achieved by two electric linear actuators that load or unload the sparse wire grid into a position centered on the optical axis of a telescope between the calibration time and CMB observation. Furthermore, the sparse wire grid can be rotated by using a motor. A rotary encoder and a gravity sensor are installed on the sparse wire grid to monitor the wire direction. They allow us to achieve detector polarization angle calibration with an expected systematic error of 0.08°. The calibration system will be installed in small-aperture telescopes at Simons Observatory.
  • Ryo Nakano, Hayato Takakura, Yutaro Sekimoto, Junji Inatani, Masahiro Sugimoto, Shugo Oguri, Frederick Matsuda
    Journal of Astronomical Telescopes, Instruments, and Systems 9(02) 2023年4月19日  
  • Miki Kurihara, Masahiro Tsujimoto, Megan E. Eckart, Caroline A. Kilbourne, Frederick T. Matsuda, Brian Mclaughlin, Shugo Oguri, Frederick S. Porter, Yoh Takei, Yoichi Kochibe
    Journal of Astronomical Telescopes, Instruments, and Systems 9(1) 18004 2023年1月1日  
    Electromagnetic interference (EMI) for low-temperature detectors is a serious concern in many missions. We investigate the EMI caused by the spacecraft components to the x-ray microcalorimeter of the Resolve instrument onboard the x-ray imaging and spectroscopy mission, which is currently under development by an international collaboration and is planned to be launched in 2023. We focus on the EMI from (a) the low-frequency magnetic field generated by the magnetic torquers (MTQ) used for the spacecraft attitude control and (b) the radio-frequency (RF) electromagnetic field generated by the S and X band antennas used for communication between the spacecraft and the ground stations. We executed a series of ground tests both at the instrument and spacecraft levels using the flight-model hardware in 2021-2022 in a JAXA facility in Tsukuba. We also conducted electromagnetic simulations partially using the Fugaku high-performance computing facility. The MTQs were found to couple with the microcalorimeter, which we speculate through pick-ups of low-frequency magnetic field and further capacitive coupling. There is no evidence that the resultant energy resolution degradation is beyond the current allocation of noise budget. The RF communication system was found to leave no significant effect. We present the result of the tests and simulation in this article.
  • Ryo Nakano, Hayato Takakura, Yutaro Sekimoto, Junji Inatani, Masahiro Sugimoto, Shugo Oguri, Frederick T. Matsuda
    Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy XI 2022年8月31日  
  • Hayato Takakura, Ryo Nakano, Yutaro Sekimoto, Junji Inatani, Masahiro Sugimoto, Frederick T. Matsuda, Shugo Oguri
    Space Telescopes and Instrumentation 2022: Optical, Infrared, and Millimeter Wave 2022年8月27日  
  • Shugo Oguri, Tadayasu Dotani, Masahito Isshiki, Shota Iwabuchi, Tooru Kaga, Frederick T. Matsuda, Yasuyuki Miyazaki, Baptiste Mot, Ryo Nagata, Katsuhiro Narasaki, Hiroyuki Ogawa, Toshiaki Okudaira, Kimihide Odagiri, Thomas Prouve, Gilles Roudil, Yasutaka Satoh, Yutaro Sekimoto, Toyoaki Suzuki, Kazuya Watanuki, Seiji Yoshida, Keisuke Yoshihara
    Space Telescopes and Instrumentation 2022: Optical, Infrared, and Millimeter Wave 2022年8月27日  
  • SHUNSUKE ADACHI, Tylor Adkins, Mario Andrés Osvaldo Aguilar Faúndez, Kam Arnold, Carlo BACCIGALUPI, Darcy Barron, scott chapman, Ka Hei Kolen Cheung, Yuji Chinone, Kevin T. Crowley, Tucker Elleflot, Josquin Errard, Giulio Fabbian, Chang Feng, Takuro Fujino, Nicholas Galitzki, N. W. HALVERSON, MASAYA HASEGAWA, Masashi Hazumi, Hirose, H., Logan Howe, Ito, J., Oliver Jeong, Daiuske Kaneko, Katayama, N., Brian Keating, Theodore Kisner, Nicoletta Krachmalnicoff, Kusaka, A., Adrian Lee, Eric Linder, Anto I Lonappan, Lowry, L.N., Frederick Matsuda, Tomotake Matsumura, Yuto Minami, Masaaki Murata, Haruki Nishino, Yume Nishinomiya, Davide Poletti, Christian Reichardt, Ross, C., Segawa, Y., Praween Siritanasak, Radek Stompor, Aritoki Suzuki, Tajima, O., Satoru Takakura, Takatori, S., Tanabe, D., Teply, G., Kyohei Yamada, Yuyang
    Astrophys.J. 931(2) 101-101 2022年5月27日  査読有り
  • P. Vielva, E. Martínez-González, F. J. Casas, T. Matsumura, S. Henrot-Versillé, E. Komatsu, J. Aumont, R. Aurlien, C. Baccigalupi, A. J. Banday, R. B. Barreiro, N. Bartolo, E. Calabrese, K. Cheung, F. Columbro, A. Coppolecchia, P. De Bernardis, T. De Haan, E. De La Hoz, M. De Petris, S. Della Torre, P. Diego-Palazuelos, H. K. Eriksen, J. Errard, F. Finelli, C. Franceschet, U. Fuskeland, M. Galloway, K. Ganga, M. Gervasi, R. T. Génova-Santos, T. Ghigna, E. Gjerløw, A. Gruppuso, M. Hazumi, D. Herranz, E. Hivon, K. Kohri, L. Lamagna, C. Leloup, J. Macias-Perez, S. Masi, F. T. Matsuda, G. Morgante, R. Nakano, F. Nati, P. Natoli, S. Nerval, K. Odagiri, S. Oguri, L. Pagano, A. Paiella, D. Paoletti, F. Piacentini, G. Polenta, G. Puglisi, M. Remazeilles, A. Ritacco, J. A. Rubino-Martin, D. Scott, Y. Sekimoto, M. Shiraishi, G. Signorelli, H. Takakura, A. Tartari, K. L. Thompson, M. Tristram, L. Vacher, N. Vittorio, I. K. Wehus, M. Zannoni
    Journal of Cosmology and Astroparticle Physics 2022(4) 2022年4月  
    A methodology to provide the polarization angle requirements for different sets of detectors, at a given frequency of a CMB polarization experiment, is presented. The uncertainties in the polarization angle of each detector set are related to a given bias on the tensor-to-scalar ratio r parameter. The approach is grounded in using a linear combination of the detector sets to obtain the CMB polarization signal. In addition, assuming that the uncertainties on the polarization angle are in the small angle limit (lower than a few degrees), it is possible to derive analytic expressions to establish the requirements. The methodology also accounts for possible correlations among detectors, that may originate from the optics, wafers, etc. The approach is applied to the LiteBIRD space mission. We show that, for the most restrictive case (i.e., full correlation of the polarization angle systematics among detector sets), the requirements on the polarization angle uncertainties are of around 1 arcmin at the most sensitive frequency bands (i.e., ≈ 150 GHz) and of few tens of arcmin at the lowest (i.e., ≈ 40 GHz) and highest (i.e., ≈ 400 GHz) observational bands. Conversely, for the least restrictive case (i.e., no correlation of the polarization angle systematics among detector sets), the requirements are ≈ 5 times less restrictive than for the previous scenario. At the global and the telescope levels, polarization angle knowledge of a few arcmins is sufficient for correlated global systematic errors and can be relaxed by a factor of two for fully uncorrelated errors in detector polarization angle. The reported uncertainty levels are needed in order to have the bias on r due to systematics below the limit established by the LiteBIRD collaboration.
  • Kevork Abazajian, Graeme E. Addison, Peter Adshead, Zeeshan Ahmed, Daniel Akerib, Aamir Ali, Steven W. Allen, David Alonso, Marcelo Alvarez, Mustafa A. Amin, Adam Anderson, Kam S. Arnold, Peter Ashton, Carlo Baccigalupi, Debbie Bard, Denis Barkats, Darcy Barron, Peter S. Barry, James G. Bartlett, Ritoban Basu Thakur, Nicholas Battaglia, Rachel Bean, Chris Bebek, Amy N. Bender, Bradford A. Benson, Federico Bianchini, Colin A. Bischoff, Lindsey Bleem, James J. Bock, Sebastian Bocquet, Kimberly K. Boddy, J. Richard Bond, Julian Borrill, François R. Bouchet, Thejs Brinckmann, Michael L. Brown, Sean Bryan, Victor Buza, Karen Byrum, Carlos Hervias Caimapo, Erminia Calabrese, Victoria Calafut, Robert Caldwell, John E. Carlstrom, Julien Carron, Thomas Cecil, Anthony Challinor, Clarence L. Chang, Yuji Chinone, Hsiao-Mei Sherry Cho, Asantha Cooray, Will Coulton, Thomas M. Crawford, Abigail Crites, Ari Cukierman, Francis-Yan Cyr-Racine, Tijmen de Haan, Jacques Delabrouille, Mark Devlin, Eleonora Di Valentino, Marion Dierickx, Matt Dobbs, Shannon Duff, Cora Dvorkin, Joseph Eimer, Tucker Elleflot, Josquin Errard, Thomas Essinger-Hileman, Giulio Fabbian, Chang Feng, Simone Ferraro, Jeffrey P. Filippini, Raphael Flauger, Brenna Flaugher, Aurelien A. Fraisse, Andrei Frolov, Nicholas Galitzki, Patricio A. Gallardo, Silvia Galli, Ken Ganga, Martina Gerbino, Vera Gluscevic, Neil Goeckner-Wald, Daniel Green, Daniel Grin, Evan Grohs, Riccardo Gualtieri, Jon E. Gudmundsson, Ian Gullett, Nikhel Gupta, Salman Habib, Mark Halpern, Nils W. Halverson, Shaul Hanany, Kathleen Harrington, Masaya Hasegawa, Matthew Hasselfield, Masashi Hazumi, Katrin Heitmann, Shawn Henderson, Brandon Hensley, Charles Hill, J. Colin Hill, Renée Hložek, Shuay-Pwu Patty Ho, Thuong Hoang, Gil Holder, William Holzapfel, John Hood, Johannes Hubmayr, Kevin M. Huffenberger, Howard Hui, Kent Irwin, Oliver Jeong, Bradley R. Johnson, William C. Jones, Jae Hwan Kang, Kirit S. Karkare, Nobuhiko Katayama, Reijo Keskitalo, Theodore Kisner, Lloyd Knox, Brian J. Koopman, Arthur Kosowsky, John Kovac, Ely D. Kovetz, Steve Kuhlmann, Chao-lin Kuo, Akito Kusaka, Anne Lähteenmäki, Charles R. Lawrence, Adrian T. Lee, Antony Lewis, Dale Li, Eric Linder, Marilena Loverde, Amy Lowitz, Phil Lubin, Mathew S. Madhavacheril, Adam Mantz, Gabriela Marques, Frederick Matsuda, Philip Mauskopf, Heather McCarrick, Jeffrey McMahon, P. Daniel Meerburg, Jean-Baptiste Melin, Felipe Menanteau, Joel Meyers, Marius Millea, Joseph Mohr, Lorenzo Moncelsi, Maria Monzani, Tony Mroczkowski, Suvodip Mukherjee, Johanna Nagy, Toshiya Namikawa, Federico Nati, Tyler Natoli, Laura Newburgh, Michael D. Niemack, Haruki Nishino, Brian Nord, Valentine Novosad, Roger O’Brient, Stephen Padin, Steven Palladino, Bruce Partridge, Don Petravick, Elena Pierpaoli, Levon Pogosian, Karthik Prabhu, Clement Pryke, Giuseppe Puglisi, Benjamin Racine, Alexandra Rahlin, Mayuri Sathyanarayana Rao, Marco Raveri, Christian L. Reichardt, Mathieu Remazeilles, Graca Rocha, Natalie A. Roe, Anirban Roy, John E. Ruhl, Maria Salatino, Benjamin Saliwanchik, Emmanuel Schaan, Alessandro Schillaci, Benjamin Schmitt, Marcel M. Schmittfull, Douglas Scott, Neelima Sehgal, Sarah Shandera, Blake D. Sherwin, Erik Shirokoff, Sara M. Simon, Anže Slosar, David Spergel, Tyler St. Germaine, Suzanne T. Staggs, Antony Stark, Glenn D. Starkman, Radek Stompor, Chris Stoughton, Aritoki Suzuki, Osamu Tajima, Grant P. Teply, Keith Thompson, Ben Thorne, Peter Timbie, Maurizio Tomasi, Matthieu Tristram, Gregory Tucker, Caterina Umiltà, Alexander van Engelen, Eve M. Vavagiakis, Joaquin D. Vieira, Abigail G. Vieregg, Kasey Wagoner, Benjamin Wallisch, Gensheng Wang, Scott Watson, Ben Westbrook, Nathan Whitehorn, Edward J. Wollack, W. L. Kimmy Wu, Zhilei Xu, H. Y. Eric Yang, Siavash Yasini, Volodymyr G. Yefremenko, Ki Won Yoon, Edward Young, Cyndia Yu, Andrea Zonca
    The Astrophysical Journal 926(1) 54 2022年2月1日  
    <jats:title>Abstract</jats:title> <jats:p>CMB-S4—the next-generation ground-based cosmic microwave background (CMB) experiment—is set to significantly advance the sensitivity of CMB measurements and enhance our understanding of the origin and evolution of the universe. Among the science cases pursued with CMB-S4, the quest for detecting primordial gravitational waves is a central driver of the experimental design. This work details the development of a forecasting framework that includes a power-spectrum-based semianalytic projection tool, targeted explicitly toward optimizing constraints on the tensor-to-scalar ratio, <jats:italic>r</jats:italic>, in the presence of Galactic foregrounds and gravitational lensing of the CMB. This framework is unique in its direct use of information from the achieved performance of current Stage 2–3 CMB experiments to robustly forecast the science reach of upcoming CMB-polarization endeavors. The methodology allows for rapid iteration over experimental configurations and offers a flexible way to optimize the design of future experiments, given a desired scientific goal. To form a closed-loop process, we couple this semianalytic tool with map-based validation studies, which allow for the injection of additional complexity and verification of our forecasts with several independent analysis methods. We document multiple rounds of forecasts for CMB-S4 using this process and the resulting establishment of the current reference design of the primordial gravitational-wave component of the Stage-4 experiment, optimized to achieve our science goals of detecting primordial gravitational waves for <jats:italic>r</jats:italic> > 0.003 at greater than 5<jats:italic>σ</jats:italic>, or in the absence of a detection, of reaching an upper limit of <jats:italic>r</jats:italic> < 0.001 at 95% CL.</jats:p>
  • Miki Kurihara, Masahiro Tsujimoto, Megan E. Eckart, Caroline A. Kilbourne, Frederick T. Matsuda, Brian McLaughlin, Shugo Oguri, Frederick S. Porter, Yoh Takei, Yoichi Kochibe
    SPACE TELESCOPES AND INSTRUMENTATION 2022: ULTRAVIOLET TO GAMMA RAY 12181 2022年  
    Electromagnetic interference (EMI) for low-temperature detectors is a serious concern in many missions. We investigate the EMI caused by the spacecraft components to the x-ray microcalorimeter of the Resolve instrument onboard the X-Ray Imaging and Spectroscopy Mission (XRISM), which is currently under development by an international collaboration and is planned to be launched in 2023. We focus on the EMI from (a) the low-frequency magnetic field generated by the magnetic torquers used for the spacecraft attitude control and (b) the radio-frequency (RF) electromagnetic field generated by the S and X band antennas used for communication between the spacecraft and the ground stations. We executed a series of ground tests both at the instrument and spacecraft levels using the flight model hardware in 2021-2022 in a JAXA facility in Tsukuba. We also conducted electromagnetic simulations partially using the Fugaku high-performance computing facility. The magnetic torquers were found to couple with the microcalorimeter, but there is no evidence that the resultant degradation is beyond the current allocation of noise budget. The RF communication system was found to leave no significant effect. We present the result of the tests and simulation in this article.
  • Kimihide Odagiri, Masaru Saijo, Keisuke Shinozaki, Frederick Matsuda, Shugo Oguri, Toyoaki Suzuki, Hiroyuki Ogawa, Yutaro Sekimoto, Tadayasu Dotani, Kazuya Watanuki, Ryo Sugimoto, Keisuke Yoshihara, Katsuhiro Narasaki, Masahito Isshiki, Seiji Yoshida, Thomas Prouve, Jean-Marc Duval, Keith L. Thompson
    SPACE TELESCOPES AND INSTRUMENTATION 2022: OPTICAL, INFRARED, AND MILLIMETER WAVE 12180 2022年  
    LiteBIRD is a JAXA-led international project that aims to test representative inflationary models by performing an all-sky cosmic microwave background radiation (CMB) polarization survey for 3 years at the Sun-Earth Lagrangian point L2. We aim to launch LiteBIRD in the late 2020s. The payload module (PLM) is mainly composed of the Low-Frequency Telescope (LFT), the Mid-Frequency Telescope and High-Frequency Telescope (MHFT), and a cryo-structure. To conduct the high-precision and high-sensitivity CMB observations, it is required to cool the telescopes down to less than 5 K and the detectors down to 100 mK. The high temperature stability is also an important design factor. It is essential to design and analyze the cryogenic thermal system for PLM. In this study, the heat balance, temperature distribution, and temperature stability of the PLM for the baseline design are evaluated by developing the transient thermal model. The effect of the Joule-Thomson (JT) coolers cold tip temperature variation, the periodical changes in subK Adiabatic Demagnetization Refrigerator (ADR) heat dissipation, and the satellite spin that generates the variable direction of solar flux incident are implemented in the model. The effect of contact thermal conductance in the LFT and the emissivity of the V-groove on the temperature distribution and heat balance are investigated. Based on the thermal analysis, it was confirmed that the PLM baseline design meets the requirement of the temperature and the cooling capability of the 4K-JT cooler. In addition, the temperatures of the V-groove and the LFT 5-K frame are sufficiently stable for the observation. The temperature stability of the Low Frequency Focal Plane (LF-FP) is also discussed in this paper.
  • Xu, Zhilei, Adachi, Shunsuke, Ade, Peter, Beall, J. A., Bhandarkar, Tanay, Bond, J. Richard, Chesmore, Grace E., Chinone, Yuji, Choi, Steve K., Connors, Jake A., Coppi, Gabriele, Cothard, Nicholas F., Crowley, Kevin D., Devlin, Mark, Dicker, Simon, Dober, Bradley, Duff, Shannon M., Galitzki, Nicholas, Gallardo, Patricio A., Golec, Joseph E., Gudmundsson, Jon E., Haridas, Saianeesh K., Harrington, Kathleen, Hervias-Caimapo, Carlos, Patty Ho, Shuay-Pwu, Huber, Zachary B., Hubmayr, Johannes, Iuliano, Jeffrey, Kaneko, Daisuke, Kofman, Anna M., Koopman, Brian J., Lashner, Jack, Limon, Michele, Link, Michael J., Lucas, Tammy J., Matsuda, Frederick, McCarrick, Heather, Nati, Federico, Niemack, Michael D., Orlowski-Scherer, John, Piccirillo, Lucio, Sarmiento, Karen Perez, Schaan, Emmanuel, Silva-Feaver, Maximiliano, Sonka, Rita, Sutariya, Shreya, Tajima, Osamu, Teply, Grant P., Terasaki, Tomoki, Thornton, Robert, Tucker, Carole, Ullom, Joel, Vavagiakis, Eve M., Vissers, Michael R., Walker, Samantha, Whipps, Zachary, Wollack, Edward J., Zannoni, Mario, Zhu, Ningfeng, Zonca, Andrea, Simons Observatory Collaboration
    Research Notes of the American Astronomical Society 2021年4月  
    The Simons Observatory is a Cosmic Microwave Background experiment to observe the microwave sky in six frequency bands from 30 to 290 GHz. The Observatory—at ∼5200 m altitude—comprises three Small Aperture Telescopes and one Large Aperture Telescope (LAT) at the Atacama Desert, Chile. This research note describes the design and current status of the LAT along with its future timeline....
  • Jon E. Gudmundsson, Patricio A. Gallardo, Roberto Puddu, Simon R. Dicker, Alexandre E. Adler, Aamir M. Ali, Andrew Bazarko, Grace E. Chesmore, Gabriele Coppi, Nicholas F. Cothard, Nadia Dachlythra, Mark Devlin, Rolando Dünner, Giulio Fabbian, Nicholas Galitzki, Joseph E. Golec, Shuay-Pwu Patty Ho, Peter C. Hargrave, Anna M. Kofman, Adrian T. Lee, Michele Limon, Frederick T. Matsuda, Philip D. Mauskopf, Kavilan Moodley, Federico Nati, Michael D. Niemack, John Orlowski-Scherer, Lyman A. Page, Bruce Partridge, Giuseppe Puglisi, Christian L. Reichardt, Carlos E. Sierra, Sara M. Simon, Grant P. Teply, Carole Tucker, Edward J. Wollack, Zhilei Xu, Ningfeng Zhu
    Applied Optics 60(4) 823-837 2021年2月1日  
    We present geometrical and physical optics simulation results for the Simons Observatory Large Aperture Telescope. This work was developed as part of the general design process for the telescope, allowing us to evaluate the impact of various design choices on performance metrics and potential systematic effects. The primary goal of the simulations was to evaluate the final design of the reflectors and the cold optics that are now being built. We describe nonsequential ray tracing used to inform the design of the cold optics, including absorbers internal to each optics tube. We discuss ray tracing simulations of the telescope structure that allow us to determine geometries that minimize detector loading and mitigate spurious near-field effects that have not been resolved by the internal baffling. We also describe physical optics simulations, performed over a range of frequencies and field locations, that produce estimates of monochromatic far-field beam patterns, which in turn are used to gauge general optical performance. Finally, we describe simulations that shed light on beam sidelobes from panel gap diffraction.
  • Zhilei Xu, Grace E. Chesmore, Shunsuke Adachi, Aamir M. Ali, Andrew Bazarko, Gabriele Coppi, Mark Devlin, Tom Devlin, Simon R. Dicker, Patricio A. Gallardo, Joseph E. Golec, Jon E. Gudmundsson, Kathleen Harrington, Makoto Hattori, Anna Kofman, Kenji Kiuchi, Akito Kusaka, Michele Limon, Frederick Matsuda, Jeff McMahon, Federico Nati, Michael D. Niemack, Aritoki Suzuki, Grant P. Teply, Robert J. Thornton, Edward J. Wollack, Mario Zannoni, Ningfeng Zhu
    Applied Optics 60(4) 864-864 2021年1月26日  
    Controlling stray light at millimeter wavelengths requires special optical design and selection of absorptive materials that should be compatible with cryogenic operating environments. While a wide selection of absorptive materials exists, these typically exhibit high indices of refraction and reflect/scatter a significant fraction of light before absorption. For many lower index materials such as commercial microwave absorbers, their applications in cryogenic environments are challenging. In this paper, we present a new tool to control stray light: metamaterial microwave absorber tiles. These tiles comprise an outer metamaterial layer that approximates a lossy gradient index anti-reflection coating. They are fabricated via injection molding commercially available carbon-loaded polyurethane (25% by mass). The injection molding technology enables mass production at low cost. The design of these tiles is presented, along with thermal tests to 1 K. Room temperature optical measurements verify their control of reflectance to less than 1% up to angles of incidence, and control of wide angle scattering below 0.01%. The dielectric properties of the bulk carbon-loaded material used in the tiles is also measured at different temperatures, confirming that the material maintains similar dielectric properties down to 3 K.
  • Yuuko Segawa, Haruaki Hirose, Daisuke Kaneko, Masaya Hasegawa, Shunsuke Adachi, Peter Ade, Mario Andres Osvaldo Aguilar Faundez, Yoshiki Akiba, Kam Arnold, Jessica Avva, Carlo Baccigalupi, Darcy Barron, Dominic Beck, Shawn Beckman, Federico Bianchini, David Boettger, Julian Borrill, Julien Carron, Scott Chapman, Kolen Cheung, Yuji Chinone, Kevin Crowley, Ari Cukierman, Tijmen de Haan, Matt Dobbs, Rolando Dunner, Hamza El Bouhargani, Tucker Elleflot, Josquin Errard, Giulio Fabbian, Stephen Feeney, Chang Feng, Takuro Fujino, Nicholas Galitzki, Neil Goeckner-Wald, John Groh, Grantland Hall, Nils Halverson, Takaho Hamada, Masashi Hazumi, Charles Hill, Logan Howe, Yuki Inoue, Jennifer Ito, Greg Jaehnig, Oliver Jeong, Nobuhiko Katayama, Brian Keating, Reijo Keskitalo, Shuhei Kikuchi, Theodore Kisner, Nicoletta Krachmalnicoff, Akito Kusaka, Adrian T. Lee, David Leon, Eric Linder, Lindsay Ng Lowry, Aashrita Mangu, Frederick Matsuda, Yuto Minami, Josh Montgomery, Martin Navaroli, Haruki Nishino, Julien Peloton, Anh Thi Phuong Pham, Davide Poletti, Giuseppe Puglisi, Christopher Raum, Christian L. Reichardt, Colin Ross, Maximiliano Silva-Feaver, Praween Siritanasak, Radek Stompor, Aritoki Suzuki, Osamu Tajima, Satoru Takakura, Sayuri Takatori, Daiki Tanabe, Grant P. Teply, Calvin Tsai, Clara Verges, Ben Westbrook, Yuyang Zhou
    PROCEEDINGS OF THE 14TH ASIA-PACIFIC PHYSICS CONFERENCE 2319 2021年  
    POLARBEAR-2A is the first receiver for the Simons Array cosmic micmwave background polarization experiment. POLARBEAR-2A has transition-edge sensor bolometers on the focal plane. Signals from bolometers arc multiplexed and read out by a single SQUID. The receiver was deployed in late 2018 in Atacama, Chile, and operation started in 2019, where rapid confirmation of correspondence between bolometers and multiplexed readout channels was important as an initial step of performance validation. For this purpose, we devised a method using a coherent source that allows us to identify the frequency band and polarization sensitivity angle for each readout channel without detailed bolometer tuning.
  • Kenji Kiuchi, Shunsuke Adachi, Aamir M. Ali, Kam Arnold, Peter Ashton, Jason E. Austermann, Andrew Bazako, James A. Beall, Yuji Chinone, Gabriele Coppi, Kevin D. Crowley, Kevin T. Crowley, Simon Dicker, Bradley Dober, Shannon M. Duff, Giulio Fabbian, Nicholas Galitzki, Joseph E. Golec, Jon E. Gudmundsson, Kathleen Harrington, Masaya Hasegawa, Makoto Hattori, Charles A. Hill, Shuay-Pwu Patty Ho, Johannes Hubmayr, Bradley R. Johnson, Daisuke Kaneko, Nobuhiko Katayama, Brian Keating, Akito Kusaka, Jack Lashner, Adrian T. Lee, Frederick Matsuda, Heather McCarrick, Masaaki Murata, Federico Nati, Yume Nishinomiya, Lyman Page, Mayuri Sathyanarayana Rao, Christian L. Reichardt, Kana Sakaguri, Yuki Sakurai, Joseph Sibert, Jacob Spisak, Osamu Tajima, Grant P. Teply, Tomoki Terasaki, Tran Tsan, Samantha Walker, Edward J. Wollack, Zhilei Xu, Kyohei Yamada, Mario Zannoni, Ningfeng Zhu
    Ground-based and Airborne Telescopes VIII 2020年12月18日  
  • C. A. Hill, A. Kusaka, P. Ashton, P. Barton, T. Adkins, K. Arnold, B. Bixler, S. Ganjam, A. T. Lee, F. Matsuda, T. Matsumura, Y. Sakurai, R. Tat, Y. Zhou
    Review of Scientific Instruments 91(12) 124503-124503 2020年12月1日  査読有り
  • S. Adachi, M. A. O. Aguilar Faúndez, K. Arnold, C. Baccigalupi, D. Barron, D. Beck, F. Bianchini, S. Chapman, K. Cheung, Y. Chinone, K. Crowley, M. Dobbs, H. El Bouhargani, T. Elleflot, J. Errard, G. Fabbian, C. Feng, T. Fujino, N. Galitzki, N. Goeckner-Wald, J. Groh, G. Hall, M. Hasegawa, M. Hazumi, H. Hirose, A. H. Jaffe, O. Jeong, D. Kaneko, N. Katayama, B. Keating, S. Kikuchi, T. Kisner, A. Kusaka, A. T. Lee, D. Leon, E. Linder, L. N. Lowry, F. Matsuda, T. Matsumura, Y. Minami, M. Navaroli, H. Nishino, A. T. P. Pham, D. Poletti, C. L. Reichardt, Y. Segawa, P. Siritanasak, O. Tajima, S. Takakura, S. Takatori, D. Tanabe, G. P. Teply, C. Tsai, C. Vergès, B. Westbrook, Y. Zhou
    The Astrophysical Journal 904(1) 65-65 2020年11月20日  査読有り
  • Aamir M. Ali, Shunsuke Adachi, Kam Arnold, Peter Ashton, Andrew Bazarko, Yuji Chinone, Gabriele Coppi, Lance Corbett, Kevin D. Crowley, Kevin T. Crowley, Mark Devlin, Simon Dicker, Shannon Duff, Chris Ellis, Nicholas Galitzki, Neil Goeckner-Wald, Kathleen Harrington, Erin Healy, Charles A. Hill, Shuay-Pwu Patty Ho, Johannes Hubmayr, Brian Keating, Kenji Kiuchi, Akito Kusaka, Adrian T. Lee, Michael Ludlam, Aashrita Mangu, Frederick Matsuda, Heather McCarrick, Federico Nati, Michael D. Niemack, Haruki Nishino, John Orlowski-Scherer, Mayuri Sathyanarayana Rao, Christopher Raum, Yuki Sakurai, Maria Salatino, Trevor Sasse, Joseph Seibert, Carlos Sierra, Maximiliano Silva-Feaver, Jacob Spisak, Sara M. Simon, Suzanne Staggs, Osamu Tajima, Grant Teply, Tran Tsan, Edward Wollack, Bejamin Westbrook, Zhilei Xu, Mario Zannoni, Ningfeng Zhu
    Journal of Low Temperature Physics 200(5-6) 461-471 2020年9月  査読有り
  • Daisuke Kaneko, S. Adachi, P. A. R. Ade, M. Aguilar Faúndez, Y. Akiba, K. Arnold, C. Baccigalupi, D. Barron, D. Beck, S. Beckman, F. Bianchini, D. Boettger, J. Borrill, J. Carron, S. Chapman, K. Cheung, Y. Chinone, K. Crowley, A. Cukierman, M. Dobbs, R. Dűnner, H. El-Bouhargani, T. Elleflot, J. Errard, G. Fabbian, S. M. Feeney, C. Feng, T. Fujino, N. Galitzki, A. Gilbert, N. Goeckner-Wald, J. Groh, G. Hall, N. W. Halverson, T. Hamada, M. Hasegawa, M. Hazumi, C. A. Hill, L. Howe, Y. Inoue, G. Jaehnig, O. Jeong, N. Katayama, B. Keating, R. Keskitalo, S. Kikuchi, T. Kisner, N. Krachmalnicoff, A. Kusaka, A. T. Lee, D. Leon, E. Linder, L. N. Lowry, A. Mangu, F. Matsuda, Y. Minami, M. Navaroli, H. Nishino, J. Peloton, A. T. P. Pham, D. Poletti, G. Puglisi, C. L. Reichardt, C. Ross, Y. Segawa, M. Silva-Feaver, P. Siritanasak, N. Stebor, R. Stompor, A. Suzuki, O. Tajima, S. Takakura, S. Takatori, D. Tanabe, G. P. Teply, T. Tomaru, C. Tsai, C. Verges, B. Westbrook, Y. Zhou
    Journal of Low Temperature Physics 199(3-4) 1137-1147 2020年5月  査読有り
  • M. Aguilar Faúndez, K. Arnold, C. Baccigalupi, D. Barron, D. Beck, S. Beckman, F. Bianchini, J. Carron, K. Cheung, Y. Chinone, H. El Bouhargani, T. Elleflot, J. Errard, G. Fabbian, C. Feng, T. Fujino, N. Goeckner-Wald, T. Hamada, M. Hasegawa, M. Hazumi, C. A. Hill, H. Hirose, O. Jeong, N. Katayama, B. Keating, S. Kikuchi, A. Kusaka, A. T. Lee, D. Leon, E. Linder, L. N. Lowry, F. Matsuda, T. Matsumura, Y. Minami, M. Navaroli, H. Nishino, A. T. P. Pham, D. Poletti, G. Puglisi, C. L. Reichardt, Y. Segawa, B. D. Sherwin, M. Silva-Feaver, P. Siritanasak, R. Stompor, A. Suzuki, O. Tajima, S. Takatori, D. Tanabe, G. P. Teply, C. Tsai
    The Astrophysical Journal 893(1) 85-85 2020年4月17日  査読有り
  • S. Adachi, M. A. O. Aguilar Faúndez, Y. Akiba, A. Ali, K. Arnold, C. Baccigalupi, D. Barron, D. Beck, F. Bianchini, J. Borrill, J. Carron, K. Cheung, Y. Chinone, K. Crowley, H. El Bouhargani, T. Elleflot, J. Errard, G. Fabbian, C. Feng, T. Fujino, N. Goeckner-Wald, M. Hasegawa, M. Hazumi, C. A. Hill, L. Howe, N. Katayama, B. Keating, S. Kikuchi, A. Kusaka, A. T. Lee, D. Leon, E. Linder, L. N. Lowry, F. Matsuda, T. Matsumura, Y. Minami, T. Namikawa, M. Navaroli, H. Nishino, J. Peloton, A. T. P. Pham, D. Poletti, G. Puglisi, C. L. Reichardt, Y. Segawa, B. D. Sherwin, M. Silva-Feaver, P. Siritanasak, R. Stompor, O. Tajima, S. Takatori, D. Tanabe, G. P. Teply, C. Vergès
    Physical Review Letters 124(13) 2020年4月1日  査読有り
  • F. Matsuda, L. Lowry, A. Suzuki, M. Aguilar Fáundez, K. Arnold, D. Barron, F. Bianchini, K. Cheung, Y. Chinone, T. Elleflot, G. Fabbian, N. Goeckner-Wald, M. Hasegawa, D. Kaneko, N. Katayama, B. Keating, A. T. Lee, M. Navaroli, H. Nishino, H. Paar, G. Puglisi, P. L. Richards, J. Seibert, P. Siritanasak, O. Tajima, S. Takatori, C. Tsai, B. Westbrook
    Review of Scientific Instruments 90(11) 115115-115115 2019年11月1日  査読有り筆頭著者責任著者
  • T. Namikawa, Y. Chinone, H. Miyatake, M. Oguri, R. Takahashi, A. Kusaka, N. Katayama, S. Adachi, M. Aguilar, H. Aihara, A. Ali, R. Armstrong, K. Arnold, C. Baccigalupi, D. Barron, D. Beck, S. Beckman, F. Bianchini, D. Boettger, J. Borrill, K. Cheung, L. Corbett, K. T. Crowley, H. El Bouhargani, T. Elleflot, J. Errard, G. Fabbian, C. Feng, N. Galitzki, N. Goeckner-Wald, J. Groh, T. Hamada, M. Hasegawa, M. Hazumi, C. A. Hill, L. Howe, O. Jeong, D. Kaneko, B. Keating, A. T. Lee, D. Leon, E. Linder, L. N. Lowry, A. Mangu, F. Matsuda, Y. Minami, S. Miyazaki, H. Murayama, M. Navaroli, H. Nishino, A. J. Nishizawa, A. T. P. Pham, D. Poletti, G. Puglisi, C. L. Reichardt, B. D. Sherwin, M. Silva-Feaver, P. Siritanasak, J. S. Speagle, R. Stompor, A. Suzuki, P. J. Tait, O. Tajima, M. Takada, S. Takakura, S. Takatori, D. Tanabe, M. Tanaka, G. P. Teply, C. Tsai, C. Vergés, B. Westbrook, Y. Zhou
    The Astrophysical Journal 882(1) 62-62 2019年9月4日  査読有り
    We present the first measurement of cross-correlation between the lensing potential, reconstructed from cosmic microwave background (CMB) polarization data, and the cosmic shear field from galaxy shapes. This measurement is made using data from the Polarbear CMB experiment and the Subaru Hyper Suprime-Cam (HSC) survey. By analyzing an 11 deg2 overlapping region, we reject the null hypothesis at 3.5σ and constrain the amplitude of the cross-spectrum to , where is the amplitude normalized with respect to the Planck 2018 prediction, based on the flat Λ cold dark matter cosmology. The first measurement of this cross-spectrum without relying on CMB temperature measurements is possible owing to the deep Polarbear map with a noise level of ∼6 μK arcmin, as well as the deep HSC data with a high galaxy number density of . We present a detailed study of the systematics budget to show that residual systematics in our results are negligibly small, which demonstrates the future potential of this cross-correlation technique.
  • Peter Ade, James Aguirre, Zeeshan Ahmed, Simone Aiola, Aamir Ali, David Alonso, Marcelo A. Alvarez, Kam Arnold, Peter Ashton, Jason Austermann, Humna Awan, Carlo Baccigalupi, Taylor Baildon, Darcy Barron, Nick Battaglia, Richard Battye, Eric Baxter, Andrew Bazarko, James A. Beall, Rachel Bean, Dominic Beck, Shawn Beckman, Benjamin Beringue, Federico Bianchini, Steven Boada, David Boettger, J. Richard Bond, Julian Borrill, Michael L. Brown, Sarah Marie Bruno, Sean Bryan, Erminia Calabrese, Victoria Calafut, Paolo Calisse, Julien Carron, Anthony Challinor, Grace Chesmore, Yuji Chinone, Jens Chluba, Hsiao-Mei Sherry Cho, Steve Choi, Gabriele Coppi, Nicholas F. Cothard, Kevin Coughlin, Devin Crichton, Kevin D. Crowley, Kevin T. Crowley, Ari Cukierman, John M. D'Ewart, Rolando Dünner, Tijmen de Haan, Mark Devlin, Simon Dicker, Joy Didier, Matt Dobbs, Bradley Dober, Cody J. Duell, Shannon Duff, Adri Duivenvoorden, Jo Dunkley, John Dusatko, Josquin Errard, Giulio Fabbian, Stephen Feeney, Simone Ferraro, Pedro Fluxà, Katherine Freese, Josef C. Frisch, Andrei Frolov, George Fuller, Brittany Fuzia, Nicholas Galitzki, Patricio A. Gallardo, Jose Tomas Galvez Ghersi, Jiansong Gao, Eric Gawiser, Martina Gerbino, Vera Gluscevic, Neil Goeckner-Wald, Joseph Golec, Sam Gordon, Megan Gralla, Daniel Green, Arpi Grigorian, John Groh, Chris Groppi, Yilun Guan, Jon E. Gudmundsson, Dongwon Han, Peter Hargrave, Masaya Hasegawa, Matthew Hasselfield, Makoto Hattori, Victor Haynes, Masashi Hazumi, Yizhou He, Erin Healy, Shawn W. Henderson, Carlos Hervias-Caimapo, Charles A. Hill, J. Colin Hill, Gene Hilton, Matt Hilton, Adam D. Hincks, Gary Hinshaw, Renée Hložek, Shirley Ho, Shuay-Pwu Patty Ho, Logan Howe, Zhiqi Huang, Johannes Hubmayr, Kevin Huffenberger, John P. Hughes, Anna Ijjas, Margaret Ikape, Kent Irwin, Andrew H. Jaffe, Bhuvnesh Jain, Oliver Jeong, Daisuke Kaneko, Ethan D. Karpel, Nobuhiko Katayama, Brian Keating, Sarah S. Kernasovskiy, Reijo Keskitalo, Theodore Kisner, Kenji Kiuchi, Jeff Klein, Kenda Knowles, Brian Koopman, Arthur Kosowsky, Nicoletta Krachmalnicoff, Stephen E. Kuenstner, Chao-Lin Kuo, Akito Kusaka, Jacob Lashner, Adrian Lee, Eunseong Lee, David Leon, Jason S.-Y. Leung, Antony Lewis, Yaqiong Li, Zack Li, Michele Limon, Eric Linder, Carlos Lopez-Caraballo, Thibaut Louis, Lindsay Lowry, Marius Lungu, Mathew Madhavacheril, Daisy Mak, Felipe Maldonado, Hamdi Mani, Ben Mates, Frederick Matsuda, Loïc Maurin, Phil Mauskopf, Andrew May, Nialh McCallum, Chris McKenney, Jeff McMahon, P. Daniel Meerburg, Joel Meyers, Amber Miller, Mark Mirmelstein, Kavilan Moodley, Moritz Munchmeyer, Charles Munson, Sigurd Naess, Federico Nati, Martin Navaroli, Laura Newburgh, Ho Nam Nguyen, Michael Niemack, Haruki Nishino, John Orlowski-Scherer, Lyman Page, Bruce Partridge, Julien Peloton, Francesca Perrotta, Lucio Piccirillo, Giampaolo Pisano, Davide Poletti, Roberto Puddu, Giuseppe Puglisi, Chris Raum, Christian L. Reichardt, Mathieu Remazeilles, Yoel Rephaeli, Dominik Riechers, Felipe Rojas, Anirban Roy, Sharon Sadeh, Yuki Sakurai, Maria Salatino, Mayuri Sathyanarayana Rao, Emmanuel Schaan, Marcel Schmittfull, Neelima Sehgal, Joseph Seibert, Uros Seljak, Blake Sherwin, Meir Shimon, Carlos Sierra, Jonathan Sievers, Precious Sikhosana, Maximiliano Silva-Feaver, Sara M. Simon, Adrian Sinclair, Praween Siritanasak, Kendrick Smith, Stephen R. Smith, David Spergel, Suzanne T. Staggs, George Stein, Jason R. Stevens, Radek Stompor, Aritoki Suzuki, Osamu Tajima, Satoru Takakura, Grant Teply, Daniel B. Thomas, Ben Thorne, Robert Thornton, Hy Trac, Calvin Tsai, Carole Tucker, Joel Ullom, Sunny Vagnozzi, Alexander van Engelen, Jeff Van Lanen, Daniel D. Van Winkle, Eve M. Vavagiakis, Clara Vergès, Michael Vissers, Kasey Wagoner, Samantha Walker, Jon Ward, Ben Westbrook, Nathan Whitehorn, Jason Williams, Joel Williams, Edward J. Wollack, Zhilei Xu, Byeonghee Yu, Cyndia Yu, Fernando Zago, Hezi Zhang, Ningfeng Zhu
    Journal of Cosmology and Astroparticle Physics 2019(02) 056-056 2019年2月27日  査読有り
    The Simons Observatory (SO) is a new cosmic microwave background experiment being built on Cerro Toco in Chile, due to begin observations in the early 2020s. We describe the scientific goals of the experiment, motivate the design, and forecast its performance. SO will measure the temperature and polarization anisotropy of the cosmic microwave background in six frequency bands centered at: 27, 39, 93, 145, 225 and 280 GHz. The initial configuration of SO will have three small-aperture 0.5-m telescopes and one large-aperture 6-m telescope, with a total of 60,000 cryogenic bolometers. Our key science goals are to characterize the primordial perturbations, measure the number of relativistic species and the mass of neutrinos, test for deviations from a cosmological constant, improve our understanding of galaxy evolution, and constrain the duration of reionization. The small aperture telescopes will target the largest angular scales observable from Chile, mapping ≈ 10% of the sky to a white noise level of 2 μK-arcmin in combined 93 and 145 GHz bands, to measure the primordial tensor-to-scalar ratio,r, at a target level of σ(r)=0.003. The large aperture telescope will map ≈ 40% of the sky at arcminute angular resolution to an expected white noise level of 6 μK-arcmin in combined 93 and 145 GHz bands, overlapping with the majority of the Large Synoptic Survey Telescope sky region and partially with the Dark Energy Spectroscopic Instrument. With up to an order of magnitude lower polarization noise than maps from thePlancksatellite, the high-resolution sky maps will constrain cosmological parameters derived from the damping tail, gravitational lensing of the microwave background, the primordial bispectrum, and the thermal and kinematic Sunyaev-Zel'dovich effects, and will aid in delensing the large-angle polarization signal to measure the tensor-to-scalar ratio. The survey will also provide a legacy catalog of 16,000 galaxy clusters and more than 20,000 extragalactic sources.
  • S. Takakura, M. A. O. Aguilar-Faúndez, Y. Akiba, K. Arnold, C. Baccigalupi, D. Barron, D. Beck, F. Bianchini, D. Boettger, J. Borrill, K. Cheung, Y. Chinone, T. Elleflot, J. Errard, G. Fabbian, C. Feng, N. Goeckner-Wald, T. Hamada, M. Hasegawa, M. Hazumi, L. Howe, D. Kaneko, N. Katayama, B. Keating, R. Keskitalo, T. Kisner, N. Krachmalnicoff, A. Kusaka, A. T. Lee, L. N. Lowry, F. T. Matsuda, A. J. May, Y. Minami, M. Navaroli, H. Nishino, L. Piccirillo, D. Poletti, G. Puglisi, C. L. Reichardt, Y. Segawa, M. Silva-Feaver, P. Siritanasak, A. Suzuki, O. Tajima, S. Takatori, D. Tanabe, G. P. Teply, C. Tsai
    The Astrophysical Journal 870(2) 102-102 2019年1月14日  査読有り
  • Faúndez, M.A., Arnold, K., Baccigalupi, C., Barron, D., Beck, D., Bianchini, F., Boettger, D., Borrill, J., Carron, J., Cheung, K., Chinone, Y., Bouhargani, H.E., Elleflot, T., Errard, J., Fabbian, G., Feng, C., Galitzki, N., Goeckner-Wald, N., Hasegawa, M., Hazumi, M., Howe, L., Kaneko, D., Katayama, N., Keating, B., Krachmalnicoff, N., Kusaka, A., Lee, A.T., Leon, D., Linder, E., Lowry, L.N., Matsuda, F., Minami, Y., Navaroli, M., Nishino, H., Pham, A.T.P., Poletti, D., Puglisi, G., Reichardt, C.L., Sherwin, B.D., Silva-Feaver, M., Stompor, R., Suzuki, A., Tajima, O., Takakura, S., Takatori, S., Teply, G.P., Tsai, C., Vergès, C.
    Astrophysical Journal 886(1) 38-38 2019年  
  • B. Westbrook, P. A.R. Ade, M. Aguilar, Y. Akiba, Y. Akiba, K. Arnold, C. Baccigalupi, D. Barron, D. Beck, S. Beckman, A. N. Bender, A. N. Bender, F. Bianchini, D. Boettger, J. Borrill, J. Borrill, S. Chapman, Y. Chinone, Y. Chinone, G. Coppi, K. Crowley, A. Cukierman, T. de Haan, R. Dünner, M. Dobbs, T. Elleflot, J. Errard, G. Fabbian, S. M. Feeney, C. Feng, G. Fuller, N. Galitzki, A. Gilbert, N. Goeckner-Wald, J. Groh, N. W. Halverson, N. W. Halverson, N. W. Halverson, T. Hamada, T. Hamada, M. Hasegawa, M. Hasegawa, M. Hazumi, M. Hazumi, M. Hazumi, M. Hazumi, C. A. Hill, C. A. Hill, W. Holzapfel, L. Howe, Y. Inoue, Y. Inoue, G. Jaehnig, G. Jaehnig, A. Jaffe, O. Jeong, D. Kaneko, N. Katayama, B. Keating, R. Keskitalo, R. Keskitalo, T. Kisner, T. Kisner, N. Krachmalnicoff, A. Kusaka, A. Kusaka, M. Le Jeune, A. T. Lee, A. T. Lee, A. T. Lee, D. Leon, E. Linder, E. Linder, L. Lowry, A. Madurowicz, A. Madurowicz, D. Mak, F. Matsuda, A. May, N. J. Miller, Y. Minami, J. Montgomery, M. Navaroli, H. Nishino, J. Peloton, A. Pham, L. Piccirillo, D. Plambeck, D. Poletti, G. Puglisi, C. Raum, G. Rebeiz, C. L. Reichardt, P. L. Richards, H. Roberts, H. Roberts, C. Ross, K. M. Rotermund, Y. Segawa, Y. Segawa
    Journal of Low Temperature Physics 193(5-6) 758-770 2018年12月  査読有り
    © 2018, Springer Science+Business Media, LLC, part of Springer Nature. We present on the status of POLARBEAR-2 A (PB2-A) focal plane fabrication. The PB2-A is the first of three telescopes in the Simons Array, which is an array of three cosmic microwave background polarization-sensitive telescopes located at the POLARBEAR site in Northern Chile. As the successor to the PB experiment, each telescope and receiver combination is named as PB2-A, PB2-B, and PB2-C. PB2-A and -B will have nearly identical receivers operating at 90 and 150 GHz while PB2-C will house a receiver operating at 220 and 270 GHz. Each receiver contains a focal plane consisting of seven close-hex packed lenslet-coupled sinuous antenna transition edge sensor bolometer arrays. Each array contains 271 dichroic optical pixels, each of which has four TES bolometers for a total of 7588 detectors per receiver. We have produced a set of two types of candidate arrays for PB2-A. The first we call Version 11 (V11) uses a silicon oxide (SiOx) for the transmission lines and crossover process for orthogonal polarizations. The second we call Version 13 (V13) uses silicon nitride (SiNx) for the transmission lines and cross-under process for orthogonal polarizations. We have produced enough of each type of array to fully populate the focal plane of the PB2-A receiver. The average wirebond yield for V11 and V13 arrays is 93.2% and 95.6%, respectively. The V11 arrays had a superconducting transition temperature (Tc) of 452±15 mK, a normal resistance (Rn) of 1.25±0.20Ω, and saturation powers of 5.2 ± 1.0 pW and 13 ± 1.2 pW for the 90 and 150 GHz bands, respectively. The V13 arrays had a superconducting transition temperature (Tc) of 456 ± 6 mK, a normal resistance (Rn) of 1.1±0.2Ω, and saturation powers of 10.8 ± 1.8 pW and 22.9 ± 2.6 pW for the 90 and 150 GHz bands, respectively. Production and characterization of arrays for PB2-B are ongoing and are expected to be completed by the summer of 2018. We have fabricated the first three candidate arrays for PB2-C but do not have any characterization results to present at this time.
  • C. A. Hill, A. Kusaka, P. Barton, B. Bixler, A. G. Droster, M. Flament, S. Ganjam, A. Jadbabaie, O. Jeong, A. T. Lee, A. Madurowicz, F. T. Matsuda, T. Matsumura, A. Rutkowski, Y. Sakurai, D. R. Sponseller, A. Suzuki, R. Tat
    Journal of Low Temperature Physics 193(5-6) 851-859 2018年12月  査読有り
  • Patricio A. Gallardo, Jon Gudmundsson, Aamir Ali, Sean Bryan, Yuji Chinone, Gabriele Coppi, Nicholas Cothard, Mark J. Devlin, Simon Dicker, Giulio Fabbian, Nicholas Galitzki, Charles Hill, Brian Keating, Akito Kusaka, Jacob Lashner, Adrian T. Lee, Michele Limon, Philip D. Mauskopf, Jeff McMahon, Federico Nati, Michael D. Niemack, John L. Orlowski-Scherer, Stephen C. Parshley, Giuseppe Puglisi, Christian L. Reichardt, Maria Salatino, Suzanne Staggs, Aritoki Suzuki, Eve M. Vavagiakis, Edward J. Wollack, Zhilei Xu, Ningfeng Zhu, Frederick T. Matsuda, Sara M. Simon, Brian J. Koopman
    Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy IX 2018年8月6日  
  • Nicholas Galitzki, Taylor Baildon, Darcy Barron, Jacob Lashner, Adrian T. Lee, Yaqiong Li, Michele Limon, Marius Lungu, Frederick Matsuda, Philip D. Mauskopf, Andrew J. May, Nialh McCallum, Jeff McMahon, Federico Nati, Michael D. Niemack, John L. Orlowski-Scherer, Stephen C. Parshley, Lucio Piccirillo, Mayuri S. Rao, Maria Salatino, Joseph S. Seibert, Carlos Sierra, Max Silva-Feaver, Sara M. Simon, Suzanne T. Staggs, Jason R. Stevens, Aritoki Suzuki, Grant Teply, Robert Thornton, Calvin Tsai, Joel N. Ullom, Eve M. Vavagiakis, Michael R. Vissers, Benjamin Westbrook, Edward J. Wollack, Zhilei Xu, Ningfeng Zhu, Christopher Raum, Shawn Beckman, Oliver Jeong, Aamir Ali, Kam S. Arnold, Peter C. Ashton, Jason E. Austermann, Carlo Baccigalupi, James A. Beall, Sarah Marie M. Bruno, Sean Bryan, Paolo G. Calisse, Grace E. Chesmore, Yuji Chinone, Steve K. Choi, Gabriele Coppi, Kevin D. Crowley, Kevin T. Crowley, Ari Cukierman, Mark J. Devlin, Simon Dicker, Bradley Dober, Shannon M. Duff, Jo Dunkley, Giulio Fabbian, Patricio A. Gallardo, Martina Gerbino, Neil Goeckner-Wald, Joseph E. Golec, Jon Gudmundsson, Erin E. Healy, Shawn Henderson, Charles A. Hill, Gene C. Hilton, Shuay-Pwu Patty Ho, Logan A. Howe, Johannes Hubmayr, Brian Keating, Brian J. Koopman, Kenji Kuichi, Akito Kusaka
    Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy IX 2018年7月31日  
  • Sean A. Bryan, Grant P. Teply, Sara M. Simon, Martina Gerbino, Amir Ali, Yuji Chinone, Kevin Crowley, Giulio Fabbian, Patricio Gallardo, Neil Goeckner-Wald, Brian Keating, Brian Koopman, Akito Kusaka, Frederick Matsuda, Philip Mauskopf, Jeff McMahon, Federico Nati, Giuseppe Puglisi, Christian Reichardt, Maria Salatino, Zhilei Xu, Ningfeng Zhu
    Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy IX 2018年7月9日  
  • Charles A. Hill, Sarah Marie Bruno, Sara M. Simon, Aamir Ali, Kam S. Arnold, Peter C. Ashton, Darcy Barron, Sean Bryan, Yuji Chinone, Gabriele Coppi, Kevin T. Crowley, Ari Cukierman, Simon Dicker, Jo Dunkley, Giulio Fabbian, Nicholas Galitzki, Patricio A. Gallardo, Jon E. Gudmundsson, Johannes Hubmayr, Brian Keating, Akito Kusaka, Adrian T. Lee, Frederick Matsuda, Philip D. Mauskopf, Jeff McMahon, Michael D. Niemack, Giuseppe Puglisi, Mayuri S. Rao, Maria Salatino, Carlos Sierra, Suzanne Staggs, Aritoki Suzuki, Grant Teply, Joel N. Ullom, Benjamin Westbrook, Zhilei Xu, Ningfeng Zhu
    Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy IX 2018年7月9日  
  • Frederick T. Matsuda, Satoru Takakura, Kam Arnold, David Boettger, Yuji Chinone, Masashi Hazumi, Brian Keating, Akito Kusaka, Adrian T. Lee
    Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy IX 2018年7月9日  筆頭著者
  • Simon R. Dicker, Patricio A. Gallardo, Jon E. Gudmudsson, Phillip Mauskopf, Aamir Ali, Peter Ashton, Gabriele Coppi, Mark J. Devlin, Nicholas Galitzki, Shuay-Pwu P. Ho, Charles A. Hill, Johannes Hubmayr, Brian Keating, Adrian T. Lee, Michele Limon, Frederick Matsuda, Jeff McMahon, Michael D. Niemack, John L. Orlowski-Scherer, Lucio Piccirillo, Maria Salatino, Sara M. Simon, Suzanne T. Staggs, Robert Thornton, Joel N. Ullom, Eve M. Vavagiakis, Edward J. Wollack, Zhilei Xu, Ningfeng Zhu
    Ground-based and Airborne Telescopes VII 2018年7月6日  
  • Stephen C. Parshley, Michael D. Niemack, Richard Hills, Simon R. Dicker, Rolando Dunner, Jens Erler, Patricio A. Gallardo, Jon E. Gudmundsson, Terry Herter, Brian J. Koopman, Michele Limon, Frederick T. Matsuda, Philip Mauskopf, Dominik A. Riechers, Gordon J. Stacey, Eve M. Vavagiakis
    Ground-based and Airborne Telescopes VII 2018年7月6日  
  • P. A. R. Ade, M. Aguilar, Y. Akiba, K. Arnold, C. Baccigalupi, D. Barron, D. Beck, F. Bianchini, D. Boettger, J. Borrill, S. Chapman, Y. Chinone, K. Crowley, A. Cukierman, R. Dünner, M. Dobbs, A. Ducout, T. Elleflot, J. Errard, G. Fabbian, S. M. Feeney, C. Feng, T. Fujino, N. Galitzki, A. Gilbert, N. Goeckner-Wald, J. C. Groh, G. Hall, N. Halverson, T. Hamada, M. Hasegawa, M. Hazumi, C. A. Hill, L. Howe, Y. Inoue, G. Jaehnig, A. H. Jaffe, O. Jeong, D. Kaneko, N. Katayama, B. Keating, R. Keskitalo, T. Kisner, N. Krachmalnicoff, A. Kusaka, M. Le Jeune, A. T. Lee, E. M. Leitch, D. Leon, E. Linder, L. Lowry, F. Matsuda, T. Matsumura, Y. Minami, J. Montgomery, M. Navaroli, H. Nishino, H. Paar, J. Peloton, A. T. P. Pham, D. Poletti, G. Puglisi, C. L. Reichardt, P. L. Richards, C. Ross, Y. Segawa, B. D. Sherwin, M. Silva-Feaver, P. Siritanasak, N. Stebor, R. Stompor, A. Suzuki, O. Tajima, S. Takakura, S. Takatori, D. Tanabe, G. P. Teply, T. Tomaru, C. Tucker, N. Whitehorn, A. Zahn
    The Astrophysical Journal 848(2) 121-121 2017年10月23日  査読有り
  • P. A.R. Ade, The Polarbear Collaboration, Y. Akiba, A. E. Anthony, K. Arnold, M. Atlas, D. Barron, D. Boettger, J. Borrill, S. Chapman, Y. Chinone, M. Dobbs, T. Elleflot, J. Errard, G. Fabbian, C. Feng, D. Flanigan, A. Gilbert, W. Grainger, N. W. Halverson, M. Hasegawa, K. Hattori, M. Hazumi, W. L. Holzapfel, Y. Hori, J. Howard, P. Hyland, Y. Inoue, G. C. Jaehnig, A. H. Jaffe, B. Keating, Z. Kermish, R. Keskitalo, T. Kisner, M. Le Jeune, A. T. Lee, E. M. Leitch, E. Linder, M. Lungu, F. Matsuda, T. Matsumura, X. Meng, N. J. Miller, H. Morii, S. Moyerman, M. J. Myers, M. Navaroli, H. Nishino, A. Orlando, H. Paar, J. Peloton, D. Poletti, E. Quealy, G. Rebeiz, C. L. Reichardt, P. L. Richards, C. Ross, I. Schanning, D. E. Schenck, B. D. Sherwin, A. Shimizu, C. Shimmin, M. Shimon, P. Siritanasak, G. Smecher, H. Spieler, N. Stebor, B. Steinbach, R. Stompor, A. Suzuki, S. Takakura, T. Tomaru, B. Wilson, A. Yadav, O. Zahn
    Astrophysical Journal 794(2) 2017年10月10日  査読有り
    We report a measurement of the B-mode polarization power spectrum in the cosmic microwave background (CMB) using the Polarbear experiment in Chile. The faint B-mode polarization signature carries information about the universe's entire history of gravitational structure formation, and the cosmic inflation that may have occurred in the very early universe. Our measurement covers the angular multipole range 500 &lt l &lt 2100 and is based on observations of an effective sky area of 25 deg2 with 3′.5 resolution at 150 GHz. On these angular scales, gravitational lensing of the CMB by intervening structure in the universe is expected to be the dominant source of B-mode polarization. Including both systematic and statistical uncertainties, the hypothesis of no B-mode polarization power from gravitational lensing is rejected at 97.2% confidence. The band powers are consistent with the standard cosmological model. Fitting a single lensing amplitude parameter ABB to the measured band powers, ABB = 1.12 ± 0.61(stat)-0.12 +0.04 (sys) ± 0.07(multi), where ABB = 1 is the fiducial wmap-9 ΛCDM value. In this expression, "stat" refers to the statistical uncertainty, "sys" to the systematic uncertainty associated with possible biases from the instrument and astrophysical foregrounds, and "multi" to the calibration uncertainties that have a multiplicative effect on the measured amplitude ABB.
  • P. A. R. Ade, Y. Akiba, A. E. Anthony, K. Arnold, M. Atlas, D. Barron, D. Boettger, J. Borrill, S. Chapman, Y. Chinone, M. Dobbs, T. Elleflot, J. Errard, G. Fabbian, C. Feng, D. Flanigan, A. Gilbert, W. Grainger, N. W. Halverson, M. Hasegawa, K. Hattori, M. Hazumi, W. L. Holzapfel, Y. Hori, J. Howard, P. Hyland, Y. Inoue, G. C. Jaehnig, A. H. Jaffe, B. Keating, Z. Kermish, R. Keskitalo, T. Kisner, M. Le Jeune, A. T. Lee, E. M. Leitch, E. Linder, M. Lungu, F. Matsuda, T. Matsumura, X. Meng, N. J. Miller, H. Morii, S. Moyerman, M. J. Myers, M. Navaroli, H. Nishino, A. Orlando, H. Paar, J. Peloton, D. Poletti, E. Quealy, G. Rebeiz, C. L. Reichardt, P. L. Richards, C. Ross, I. Schanning, D. E. Schenck, B. D. Sherwin, A. Shimizu, C. Shimmin, M. Shimon, P. Siritanasak, G. Smecher, H. Spieler, N. Stebor, B. Steinbach, R. Stompor, A. Suzuki, S. Takakura, T. Tomaru, B. Wilson, A. Yadav, O. Zahn
    ASTROPHYSICAL JOURNAL 848(1) 2017年10月  査読有り
  • Satoru Takakura, Mario Aguilar, Yoshiki Akiba, Kam Arnold, Carlo Baccigalupi, Darcy Barron, Shawn Beckman, David Boettger, Julian Borrill, Scott Chapman, Yuji Chinone, Ari Cukierman, Anne Ducout, Tucker Elleflot, Josquin Errard, Giulio Fabbian, Takuro Fujino, Nicholas Galitzki, Neil Goeckner-Wald, Nils W. Halverson, Masaya Hasegawa, Kaori Hattori, Masashi Hazumi, Charles Hill, Logan Howe, Yuki Inoue, Andrew H. Jaffe, Oliver Jeong, Daisuke Kaneko, Nobuhiko Katayama, Brian Keating, Reijo Keskitalo, Theodore Kisner, Nicoletta Krachmalnicoff, Akito Kusaka, Adrian T. Lee, David Leon, Lindsay Lowry, Frederick Matsuda, Tomotake Matsumura, Martin Navaroli, Haruki Nishino, Hans Paar, Julien Peloton, Davide Poletti, Giuseppe Puglisi, Christian L. Reichardt, Colin Ross, Praween Siritanasak, Aritoki Suzuki, Osamu Tajima, Sayuri Takatori, Grant Teply
    Journal of Cosmology and Astroparticle Physics 2017(05) 008-008 2017年5月3日  査読有り
  • Davide Poletti, Giulio Fabbian, Maude Le Jeune, Julien Peloton, Kam Arnold, Carlo Baccigalupi, Darcy Barron, Shawn Beckman, Julian Borrill, Scott Chapman, Yuji Chinone, Ari Cukierman, Anne Ducout, Tucker Elleflot, Josquin Errard, Stephen Feeney, Neil Goeckner-Wald, John Groh, Grantland Hall, Masaya Hasegawa, Masashi Hazumi, Charles Hill, Logan Howe, Yuki Inoue, Andrew H. Jaffe, Oliver Jeong, Nobuhiko Katayama, Brian Keating, Reijo Keskitalo, Theodore Kisner, Akito Kusaka, Adrian T. Lee, David Leon, Eric Linder, Lindsay Lowry, Frederick Matsuda, Martin Navaroli, Hans Paar, Giuseppe Puglisi, Christian L. Reichardt, Colin Ross, Praween Siritanasak, Nathan Stebor, Bryan Steinbach, Radek Stompor, Aritoki Suzuki, Osamu Tajima, Grant Teply, Nathan Whitehorn
    Astronomy & Astrophysics 600 A60-A60 2017年4月  査読有り
    Analysis of cosmic microwave background (CMB) datasets typically requires some filtering of the raw time-ordered data. For instance, in the context of ground-based observations, filtering is frequently used to minimize the impact of low frequency noise, atmospheric contributions and/or scan synchronous signals on the resulting maps. In this work we have explicitly constructed a general filtering operator, which can unambiguously remove any set of unwanted modes in the data, and then amend the map-making procedure in order to incorporate and correct for it. We show that such an approach is mathematically equivalent to the solution of a problem in which the sky signal and unwanted modes are estimated simultaneously and the latter are marginalized over. We investigated the conditions under which this amended map-making procedure can render an unbiased estimate of the sky signal in realistic circumstances. We then discuss the potential implications of these observations on the choice of map-making and power spectrum estimation approaches in the context of <italic>B</italic>-mode polarization studies. Specifically, we have studied the effects of time-domain filtering on the noise correlation structure in the map domain, as well as impact it may haveon the performance of the popular pseudo-spectrum estimators. We conclude that although maps produced by the proposed estimators arguably provide the most faithful representation of the sky possible given the data, they may not straightforwardly lead to the best constraints on the power spectra of the underlying sky signal and special care may need to be taken to ensure this is the case. By contrast, simplified map-makers which do not explicitly correct for time-domain filtering, but leave it to subsequent steps in the data analysis, may perform equally well and be easier and faster to implement. We focused on polarization-sensitive measurements targeting the <italic>B</italic>-mode component of the CMB signal and apply the proposed methods to realistic simulations based on characteristics of an actual CMB polarization experiment, POLARBEAR. Our analysis and conclusions are however more generally applicable.
  • Y. Inoue, P. Ade, Y. Akiba, C. Aleman, K. Arnold, C. Baccigalupi, B. Barch, D. Barron, A. Bender, D. Boettger, J. Borrill, S. Chapman, Y. Chinone, A. Cukierman, T. de Haan, M. A. Dobbs, A. Ducout, R. Dünner, T. Elleflot, J. Errard, G. Fabbian, S. Feeney, C. Feng, G. Fuller, A. J. Gilbert, N. Goeckner-Wald, J. Groh, G. Hall, N. Halverson, T. Hamada, M. Hasegawa, K. Hattori, M. Hazumi, C. Hill, W. L. Holzapfel, Y. Hori, L. Howe, F. Irie, G. Jaehnig, A. Jaffe, O. Jeong, N. Katayama, J. P. Kaufman, K. Kazemzadeh, B. G. Keating, Z. Kermish, R. Keskitalo, T. S. Kisner, A. Kusaka, M. Le Jeune, A. T. Lee, D. Leon, E. V. Linder, L. Lowry, F. Matsuda, T. Matsumura, N. Miller, K. Mizukami, J. Montgomery, M. Navaroli, H. Nishino, H. Paar, J. Peloton, D. Poletti, G. Puglisi, C. R. Raum, G. M. Rebeiz, C. L. Reichardt, P. L. Richards, C. Ross, K. M. Rotermund, Y. Segawa, B. D. Sherwin, I. Shirley, P. Siritanasak, N. Stebor, R. Stompor, J. Suzuki, A. Suzuki, O. Tajima, S. Takada, S. Takatori, G. P. Teply, A. Tikhomirov, T. Tomaru, N. Whitehorn, A. Zahn, O. Zahn
    Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VIII 9914 2016年8月8日  
    POLARBEAR-2 (PB-2) is a cosmic microwave background (CMB) polarization experiment that will be located in the Atacama highland in Chile at an altitude of 5200 m. Its science goals are to measure the CMB polarization signals originating from both primordial gravitational waves and weak lensing. PB-2 is designed to measure the tensor to scalar ratio, r, with precision σ(r) > 0:01, and the sum of neutrino masses, Σmz, with σ(Σmv) < 90 meV. To achieve these goals, PB-2 will employ 7588 transition-edge sensor bolometers at 95 GHz and 150 GHz, which will be operated at the base temperature of 250 mK. Science observations will begin in 2017.
  • A. Suzuki, P. Ade, Y. Akiba, C. Aleman, K. Arnold, C. Baccigalupi, B. Barch, D. Barron, A. Bender, D. Boettger, J. Borrill, S. Chapman, Y. Chinone, A. Cukierman, M. Dobbs, A. Ducout, R. Dunner, T. Elleflot, J. Errard, G. Fabbian, S. Feeney, C. Feng, T. Fujino, G. Fuller, A. Gilbert, N. Goeckner-Wald, J. Groh, T. De Haan, G. Hall, N. Halverson, T. Hamada, M. Hasegawa, K. Hattori, M. Hazumi, C. Hill, W. Holzapfel, Y. Hori, L. Howe, Y. Inoue, F. Irie, G. Jaehnig, A. Jaffe, O. Jeong, N. Katayama, J. Kaufman, K. Kazemzadeh, B. Keating, Z. Kermish, R. Keskitalo, T. Kisner, A. Kusaka, M. Le Jeune, A. Lee, D. Leon, E. Linder, L. Lowry, F. Matsuda, T. Matsumura, N. Miller, K. Mizukami, J. Montgomery, M. Navaroli, H. Nishino, J. Peloton, D. Poletti, G. Puglisi, G. Rebeiz, C. Raum, C. Reichardt, P. Richards, C. Ross, K. Rotermund, Y. Segawa, B. Sherwin, I. Shirley, P. Siritanasak, N. Stebor, R. Stompor, J. Suzuki, O. Tajima, S. Takada, S. Takakura, S. Takatori, A. Tikhomirov, T. Tomaru, B. Westbrook, N. Whitehorn, T. Yamashita, A. Zahn, O. Zahn
    Journal of Low Temperature Physics 184(3-4) 805-810 2016年8月  査読有り
    We present an overview of the design and status of the Polarbear-2 and the Simons Array experiments. Polarbear-2 is a cosmic microwave background polarimetry experiment which aims to characterize the arc-minute angular scale B-mode signal from weak gravitational lensing and search for the degree angular scale B-mode signal from inflationary gravitational waves. The receiver has a 365 mm diameter focal plane cooled to 270 mK. The focal plane is filled with 7588 dichroic lenslet–antenna-coupled polarization sensitive transition edge sensor (TES) bolometric pixels that are sensitive to 95 and 150 GHz bands simultaneously. The TES bolometers are read-out by SQUIDs with 40 channel frequency domain multiplexing. Refractive optical elements are made with high-purity alumina to achieve high optical throughput. The receiver is designed to achieve noise equivalent temperature of 5.8 μ KCMBs in each frequency band. Polarbear-2 will deploy in 2016 in the Atacama desert in Chile. The Simons Array is a project to further increase sensitivity by deploying three Polarbear-2 type receivers. The Simons Array will cover 95, 150, and 220 GHz frequency bands for foreground control. The Simons Array will be able to constrain tensor-to-scalar ratio and sum of neutrino masses to σ(r) = 6 × 10 - 3 at r= 0.1 and ∑ mν(σ= 1) to 40 meV.
  • N. Stebor, P. Ade, Y. Akiba, C. Aleman, K. Arnold, C. Baccigalupi, B. Barch, D. Barron, S. Beckman, A. Bender, D. Boettger, J. Borrill, S. Chapman, Y. Chinone, A. Cukierman, T. de Haan, M. Dobbs, A. Ducout, R. Dunner, T. Elleflot, J. Errard, G. Fabbian, S. Feeney, C. Feng, T. Fujino, G. Fuller, A. J. Gilbert, N. Goeckner-Wald, J. Groh, G. Hall, N. Halverson, T. Hamada, M. Hasegawa, K. Hattori, M. Hazumi, C. Hill, W. L. Holzapfel, Y. Hori, L. Howe, Y. Inoue, F. Irie, G. Jaehnig, A. Jaffe, O. Jeong, N. Katayama, J. P. Kaufman, K. Kazemzadeh, B. G. Keating, Z. Kermish, R. Keskitalo, T. Kisner, A. Kusaka, M. Le Jeune, A. T. Lee, D. Leon, E. V. Linder, L. Lowry, F. Matsuda, T. Matsumura, N. Miller, J. Montgomery, M. Navaroli, H. Nishino, H. Paar, J. Peloton, D. Poletti, G. Puglisi, C. R. Raum, G. M. Rebeiz, C. L. Reichardt, P. L. Richards, C. Ross, K. M. Rotermund, Y. Segawa, B. D. Sherwin, I. Shirley, P. Siritanasak, L. Steinmetz, R. Stompor, A. Suzuki, O. Tajima, S. Takada, S. Takatori, G. P. Teply, A. Tikhomirov, T. Tomaru, B. Westbrook, N. Whitehorn, A. Zahn, O. Zahn
    Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VIII 2016年7月20日  

MISC

 39

講演・口頭発表等

 46

共同研究・競争的資金等の研究課題

 2