宇宙物理学研究系

Frederick Takayuki MATSUDA

  (マツダ フレドリック タカユキ)

Profile Information

Affiliation
Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency
Degree
Ph.D.(Jun, 2017, University of California, San Diego)

Researcher number
40867032
ORCID ID
 https://orcid.org/0000-0003-0041-6447
J-GLOBAL ID
201901016586407138
researchmap Member ID
B000373123

Awards

 2

Papers

 58
  • Daisuke Kaneko, Sayuri Takatori, Masaya Hasegawa, Masashi Hazumi, Yuki Inoue, Oliver Jeong, Nobuhiko Katayama, Adrian T. Lee, Frederick Matsuda, Haruki Nishino, Praween Siritanasak, Aritoki Suzuki, Satoru Takakura, Takayuki Tomaru
    Journal of Astronomical Telescopes, Instruments, and Systems, 10(01), Jan 27, 2024  
  • Ryo Nakano, Hayato Takakura, Yutaro Sekimoto, Junji Inatani, Masahiro Sugimoto, Shugo Oguri, Frederick Matsuda
    Journal of Astronomical Telescopes, Instruments, and Systems, 9(02), Apr 19, 2023  
  • Miki Kurihara, Masahiro Tsujimoto, Megan E. Eckart, Caroline A. Kilbourne, Frederick T. Matsuda, Brian Mclaughlin, Shugo Oguri, Frederick S. Porter, Yoh Takei, Yoichi Kochibe
    Journal of Astronomical Telescopes, Instruments, and Systems, 9(1) 18004, Jan 1, 2023  
    Electromagnetic interference (EMI) for low-temperature detectors is a serious concern in many missions. We investigate the EMI caused by the spacecraft components to the x-ray microcalorimeter of the Resolve instrument onboard the x-ray imaging and spectroscopy mission, which is currently under development by an international collaboration and is planned to be launched in 2023. We focus on the EMI from (a) the low-frequency magnetic field generated by the magnetic torquers (MTQ) used for the spacecraft attitude control and (b) the radio-frequency (RF) electromagnetic field generated by the S and X band antennas used for communication between the spacecraft and the ground stations. We executed a series of ground tests both at the instrument and spacecraft levels using the flight-model hardware in 2021-2022 in a JAXA facility in Tsukuba. We also conducted electromagnetic simulations partially using the Fugaku high-performance computing facility. The MTQs were found to couple with the microcalorimeter, which we speculate through pick-ups of low-frequency magnetic field and further capacitive coupling. There is no evidence that the resultant energy resolution degradation is beyond the current allocation of noise budget. The RF communication system was found to leave no significant effect. We present the result of the tests and simulation in this article.
  • Ryo Nakano, Hayato Takakura, Yutaro Sekimoto, Junji Inatani, Masahiro Sugimoto, Shugo Oguri, Frederick T. Matsuda
    Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy XI, Aug 31, 2022  
  • Hayato Takakura, Ryo Nakano, Yutaro Sekimoto, Junji Inatani, Masahiro Sugimoto, Frederick T. Matsuda, Shugo Oguri
    Space Telescopes and Instrumentation 2022: Optical, Infrared, and Millimeter Wave, Aug 27, 2022  

Misc.

 39

Presentations

 46

Research Projects

 2