Curriculum Vitaes

Ikkoh Funaki

  (船木 一幸)

Profile Information

Affiliation
Professor, Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency
Professor, School of Physical Sciences Department of Space and Astronautical Science, The Graduate University for Advanced Studies
Degree
Doctor of Philosophy in Engineering(Mar, 1995, The University of Tokyo)

J-GLOBAL ID
200901056190267532
researchmap Member ID
1000253787

External link

Papers

 272
  • Yuki Murayama, Ryota Hara, Yoshiki Yamagiwa, Yuya Oshio, Hiroyuki Nishida, Ikkoh Funaki
    Journal of Evolving Space Activities, 71(2) 67-77, Mar, 2024  Peer-reviewed
    Magsail is a space propulsion system using the interactions between the solar wind and the magnetic field generated by the onboard coils. Magnetoplasma sail is a propulsion system that increases thrust by expanding the magnetosphere through plasma injection from the spacecraft. There are two mechanisms on the magnetospheric inflation: method using frozen-in of magnetic field to carry magnetic field lines by high dynamic pressure plasma and method using the diamagnetic current by thermal plasma, which is called the ring current. We investigated the effect of the dynamic pressure and thermal pressure on the MPS thrust performance used electromagnetic hydrodynamic simulation. It was shown that the ring current is enhanced by adding dynamic pressure to the thermal plasma and increases thrust gain. The high thrust gain over 2.25 was obtained at βth = 0.5 - 2 and βk = 4 - 8. However, the thrust is reduced because the super magneto acoustic wave region is generated in the magnetosphere, which prevents the propagation of thrust in large β conditions. The wide parameter survey reveals injection plasma parameter regions where thrust reduction is restrained and high thrust gain is obtained.
  • Yoshiki Matsunaga, Toru Takahashi, Hiroki Watanabe, Shinatora Cho, Hiroaki Kusawake, Kazuhiro Kajiwara, Fujio Kurokawa, Ikkoh Funaki
    Acta Astronautica, 213 645-656, Oct, 2023  Peer-reviewed
  • Frank Jansen, Tommaso Andreussi, Giovanni Cesarretti, Manfred Ehresmann, Julia Grill, Georg Herdrich, Ikkoh Funaki, Nathalie Girard, Jan Thimo Grundmann, David Krejci, Hans Leiter, Frederic Masson, Volker Maiwald, Tommaso Misuri, Stephane Oriol, Antonio Piragino, Alexander Reissner, Lars Schanz
    EPJ Techniques and Instrumentation, 10(1), Apr 17, 2023  Peer-reviewed
    Abstract This review deals with the selection of the electric propulsion system (EPS) for the internationally developed and designed, primary nuclear-electric space tug International Nuclear Power and Propulsion System (INPPS). INPPS is scheduled for interplanetary missions to Mars and Jupiter moon Europa missions by the end of decade 2020. Regarding specific technical and mission parameters preselected electric thruster (ET) types, developed by international companies and institutions, are analysed, evaluated and investigated for a possible application as propulsion system (PS), the so-called CET (Cluster of Electric Thrusters). It is analysed whether solely electric thrusters, combined in an adequate CET, enable the envisaged interplanetary missions—robotic and astronautic/crewed with the INPPS flagship. Thruster clusters with strategic consortium considerations are analysed as a feasible PS of the INPPS. The studied CET consists of the following: (a) only European ETs, (b) combination of German and European ETs, (c) Japanese and European ETs or at least (d) Japanese, European and US thrusters. The main results are (1) Robotic and crewed INPPS mission to Mars/Europa are realizable with EPS only (no chemical propulsion is needed), (2) that every CET, except (c) of only Japanese and part of European thrusters, is capable to perform the main part of envisaged INPPS flagship mission orbit to Mars, back to Earth and to Jupiter/Europa moon.
  • 村山裕輝, 原亮太, 山極芳樹, 大塩裕哉, 西田浩之, 船木一幸
    日本航空宇宙学会論文集, Apr, 2023  Peer-reviewed
  • Kazuki Ishihara, Kentaro Yoneyama, Hiroaki Watanabe, Noboru Itouyama, Akira Kawasaki, Ken Matsuoka, Jiro Kasahara, Akiko Matsuo, Ikkoh Funaki, Kazuyuki Higashino
    Journal of Propulsion and Power, 1-11, Feb 21, 2023  Peer-reviewed
    Rotating detonation engines (RDEs) have been actively researched around the world for application to next-generation aerospace propulsion systems because detonation combustion has theoretically higher thermal efficiency than conventional combustion. Moreover, because cylindrical RDEs have simpler combustors, further miniaturization of conventional combustors is expected. Therefore, in this study, with the aim of applying RDEs to space propulsion systems, a cylindrical RDE with a converging–diverging nozzle was manufactured; the combustor length [Formula: see text] was changed to 0, 10, 30, 50, and 200 mm; and the thrust performance and combustion mode with the different combustor lengths were compared. As a result, four combustion modes were confirmed. Detonation combustion occurred with a combustor length of [Formula: see text]: that is, a converging rotating detonation engine. The thrust performance of this engine was 94 to 100% of the theoretical rocket thrust performance, which is equivalent to the thrust performance of conventional rocket combustion generated at [Formula: see text]. This study shows that detonation combustion can significantly reduce engine weight while maintaining thrust performance.

Misc.

 206
  • 大塩裕哉, 上野一磨, 船木一幸
    宇宙科学技術連合講演会講演集(CD-ROM), 54th ROMBUNNO.1B08, 2010  
  • 大塩裕哉, 上野一磨, 船木一幸
    流体力学講演会/航空宇宙数値シミュレーション技術シンポジウム講演集(CD-ROM), 42nd-2010 ROMBUNNO.1D8, 2010  
  • 上野一磨, 大塩裕哉, 船木一幸
    スペース・プラズマ研究会, 2009(CD-ROM) ROMBUNNO.9, 2010  
  • Tomoya Fujimoto, Hirotaka Otsu, Ikkoh Funaki, Yoshiki Yamagiwa
    Transactions of the Japan Society for Aeronautical and Space Sciences, 53(180) 84-90, 2010  
    To propel a spacecraft away from the Sun, a magneto plasma sail (MPS) spacecraft produces an artificial magnetic cavity to block the hypersonic solar wind. To make a large magnetic cavity sufficient to obtain significant thrust, the MPS spacecraft increases the magnetic cavity size using an onboard coil with assistance from a plasma jet. This process is called magnetic field inflation. In this study, we performed ideal and resistive magneto hydrodynamic (MHD) analyses to investigate the magnetic diffusion effect on the magnetic field inflation process. Our results indicate that a dipole-like magnetic field is drastically deformed by a plasma jet when the magnetic Reynolds number Rm was 10 or more, the magnetic field lines were nearly identical to the streamlines of the plasma jet. Hence, no magnetic diffusion effect appeared for Rm &gt 10. Meanwhile, when Rm is an order of unity, the magnetic diffusion effect was remarkable in the current sheet formed around equatorial region. For example, when the divergence angle of a plasma jet in the polar direction was 30°, the magnetic field strength at 40m from the spacecraft (calculated by resistive MHD model) was 19% smaller than the ideal MHD model (Rm=∞). © 2010 The Japan Society for Aeronautical and Space Sciences.
  • Hideyuki Horisawa, Yusuke Sasaki, Tadaki Shinohara, Ikkoh Funaki
    Transactions of JSASS Space Technology Japan, 8 Vol. 8, (2010) pp., 2010  
  • Yoshihiro Kajimura, Kazuma Ueno, Ikkoh Funaki, Hideyuki Usui, Masanori Nunami, Iku Shinohara, Masao Nakamura, Hiroshi Yamakawa
    Transactions of JSASS Space Technology Japan, 8 Pb_19-Pb_25, 2010  
  • UENO Kazuma, FUNAKI Ikkoh, AYABE Tomohiro, OSHIO Yuya, HORISAWA Hideyuki
    Advances in Applied Plasma Science, 7 107-110, Aug 20, 2009  
  • 上野一磨, 綾部友洋, 大塩裕也, 船木一幸, 堀澤秀之
    スペース・プラズマ研究会, 2008 50-53, Jun, 2009  
  • 川村静児, 安東正樹, 瀬戸直樹, 佐藤修一, 船木一幸, 神田展行, 中村卓史, 坪野公夫, 沼田健司, 田中貴浩, 井岡邦仁, 高島健, 新谷昌人, 坂井真一郎, 中澤知洋, 長野重夫, 武者満, 森脇成典, 青柳巧介, 我妻一博, 浅田秀樹, 麻生洋一, 新井宏二, 池上健, 石川毅彦, 石崎秀晴, 石徹白晃治, 石原秀樹, 市來淨與, 伊東宏之, 伊藤洋介, 井上開輝, 上田暁俊, 植田憲一, 歌島昌由, 江尻悠美子, 榎基宏, 戎崎俊一, 江里口良治, 大石奈緒子
    日本物理学会講演概要集, 64(1) 100, Mar 3, 2009  
  • 船木一幸, 篠原育, 中野正勝, 梶村好宏, 中山宜典, 宮坂武志, 百武徹, 國中均
    日本航空宇宙学会年会講演会講演集(CD-ROM), 40th C01, 2009  
  • Kiyoshi Kinefuchi, Ikkoh Funaki, Hiroyuki Ogawa, Teruo Kato, Sumitaka Tachikawa, Toru Shimada, Takashi Abe
    47th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, 2009  
    In rocket flights, ionized exhaust plumes from solid rocket motors may interfere with RF transmission under some conditions. In order to clarify the important physical process involved, microwave attenuation and phase delay due to rocket exhaust plumes were measured during sea-level static firing tests conducted on two types of full-scale solid propellant rocket motors. The measured data were analyzed by comparing them with numerical results such as flowfield simulations of exhaust plumes and by employing a detailed analysis of microwave transmission by using a frequency-dependent finite-difference time-domain (FD2TD) method. The results revealed that either the line-of-sight microwave transmission through ionized plumes or the diffracted path around the exhaust plume mainly affects the received RF level, which depends on the magnitude of the plasma RF interaction. For the actual launch vehicle flight, the transmission process is dominated by the diffraction effect so that we applied a two-dimensional diffraction theory to analyze the communication between a vehicle and a ground station. The attenuation levels estimated using diffraction theory agree with the data recorded in-flight. Copyright © 2009 by the American Institute of Aeronautics and Astronautics, Inc.
  • 上野一磨, 船木一幸, 大塩裕哉, 堀澤秀之, 山川宏
    宇宙科学技術連合講演会講演集(CD-ROM), 53rd 2L06, 2009  
  • 大塩裕哉, 上野一磨, 船木一幸
    宇宙科学技術連合講演会講演集(CD-ROM), 53rd 1K08, 2009  
  • 梶村好宏, 上野一磨, 船木一幸, 臼井英之, 沼波政倫, 篠原育, 中村雅夫, 山川宏
    日本航空宇宙学会年会講演会講演集(CD-ROM), 40th B09, 2009  
  • 大塩裕哉, 船木一幸, 上野一磨, 綾部友洋, 堀澤秀之
    日本航空宇宙学会年会講演会講演集(CD-ROM), 40th B14, 2009  
  • Ikkoh Funaki, Kazuma Ueno, Yuya Oshio, Tomohiro Ayabe, Hideyuki Horisawa, Hiroshi Yamakawa
    AIP Conference Proceedings, 1084 754-759, 2009  Peer-reviewed
    Magnetic sail (MagSail) is a deep space propulsion system, in which an artificial magnetic cavity captures the energy of the solar wind to propel a spacecraft in the direction leaving the sun. For a scale-model experiment of the plasma flow of MagSail, we employed a magnetoplasmadynamic arcjet as a solar wind simulator. It is observed that a plasma flow from the solar wind simulator reaches a quasi-steady state of about 0.8 ms duration after a transient phase when initiating the discharge. During this initial phase of the discharge, a blast-wave was observed to develop radially in a vacuum chamber. When a solenoidal coil (MagSail scale model) is immersed into the quasi-steady flow where the velocity is 45 km/s, and the number density is 1019 m-3, a bow shock as well as a magnetic cavity were formed in front of the coil. As a result of the interaction between the plasma flow and the magnetic cavity, the momentum of the simulated solar wind is decreased, and it is found from the thrust measurement that the solar wind momentum is transferred to the coil simulating MagSail. © 2009 American Institute of Physics.
  • Yuichiro Minami, Ikkoh Funaki, Hiroshi Yamakawa, Taketsune Nakamura, Hiroyuki Nishida, Daisuke Sasaki, Hideaki Yonekura, Hirotsugu Kojima, Yoshikatsu Ueda
    RAREFIED GAS DYNAMICS, 1084 721-+, 2009  Peer-reviewed
    We extended the two-dimensional analytical theory of the boundary shape of the geomagnetosphere in the solar wind to take the coil dimension of magnetic sail into account. The boundary electric currents and the induced magnetic field around the coils are used to obtain the thrust of the magnetic sail.
  • Shuichi Sato, Seiji Kawamura, Masaki Ando, Takashi Nakamura, Kimio Tsubono, Akito Araya, Ikkoh Funaki, Kunihito Ioka, Nobuyuki Kanda, Shigenori Moriwaki, Mitsuru Musha, Kazuhiro Nakazawa, Kenji Numata, Shin Ichiro Sakai, Naoki Seto, Takeshi Takashima, Takahiro Tanaka, Kazuhiro Agatsuma, Koh Suke Aoyanagi, Koji Arai, Hideki Asada, Yoichi Aso, Takeshi Chiba, Toshikazu Ebisuzaki, Yumiko Ejiri, Motohiro Enoki, Yoshiharu Eriguchi, Masa Katsu Fujimoto, Ryuichi Fujita, Mitsuhiro Fukushima, Toshifumi Futamase, Katsuhiko Ganzu, Tomohiro Harada, Tatsuaki Hashimoto, Kazuhiro Hayama, Wataru Hikida, Yoshiaki Himemoto, Hisashi Hirabayashi, Takashi Hiramatsu, Feng Lei Hong, Hideyuki Horisawa, Mizuhiko Hosokawa, Kiyotomo Ichiki, Takeshi Ikegami, Kaiki TInoue, Koji Ishidoshiro, Hideki Ishihara, Takehiko Ishikawa, Hideharu Ishizaki, Hiroyuki Ito, Yousuke Itoh, Nobuki Kawashima, Fumiko Kawazoe, Kishimoto Naoko, Kenta Kiuchi, Shiho Kobayashi, Kazunori Kohri, Hiroyuki Koizumi, Yasufumi Kojima, Keiko Kokeyama, Wataru Kokuyama, Kei Kotake, Yoshihide Kozai, Hideaki Kudoh, Hiroo Kunimori, Hitoshi Kuninaka, Kazuaki Kuroda, Kei Ichi Maeda, Hideo Matsuhara, Yasushi Mino, Osamu Miyakawa, Shinji Miyoki, Mutsuko YMorimoto, Tomoko Morioka, Toshiyuki Morisawa, Shinji Mukohyama, Shigeo Nagano, Isao Naito, Kouji Nakamura, Hiroyuki Nakano, Kenichi Nakao, Shinichi Nakasuka, Yoshinori Nakayama, Erina Nishida, Kazutaka Nishiyama, Atsushi Nishizawa, Yoshito Niwa, Taiga Noumi, Yoshiyuki Obuchi, Masatake Ohashi, Naoko Ohishi, Masashi Ohkawa, Norio Okada, Kouji Onozato, Kenichi Oohara, Norichika Sago, Motoyuki Saijo, Masaaki Sakagami, Shihori Sakata, Misao Sasaki
    Journal of Physics: Conference Series, 154, 2009  Peer-reviewed
    DECi-hertz Interferometer Gravitational wave Observatory (DECIGO) is the planned Japanese space gravitational wave antenna, aiming to detect gravitational waves from astrophysically and cosmologically significant sources mainly between 0.1 Hz and 10 Hz and thus to open a new window for gravitational wave astronomy and for the universe. DECIGO will consist of three drag-free spacecraft, 1000 km apart from each other, whose relative displacements are measured by a differential Fabry-Perot interferometer. We plan to launch DECIGO in middle of 2020s, after sequence of two precursor satellite missions, DECIGO pathfinder and Pre-DECIGO, for technology demonstration required to realize DECIGO and hopefully for detection of gravitational waves from our galaxy or nearby galaxies. © 2009 IOP Publishing Ltd.
  • FUNAKI Ikkoh, UENO Kazuma, KIMURA Toshiyuki, AYABE Tomohiro, HORISAWA Hideyuki
    スペース・プラズマ研究会, 2007 86-89, Jul, 2008  
  • AYABE Tomohiro, UENO Kazuma, KIMURA Toshiyuki, HORISAWA Hideyuki, FUNAKI Ikko, YAMAKAWA Hiroshi
    衝撃波シンポジウム講演論文集, 2007 57-60, Mar 17, 2008  
  • 佐々木大祐, 藤本, 船木一幸, 山川宏, 南祐一郎, 小嶋浩嗣, 上田義勝, 臼井英之
    RISH KDKシンポジウム, Mar, 2008  
  • 綾部友洋, 木村俊之, 上野一磨, 堀澤秀之, 船木一幸, 山川宏
    流体力学講演会/航空宇宙数値シミュレーション技術シンポジウム講演集, 40th-2008 205-208, 2008  
  • Sasaki D, Funaki I, Yamakawa H, Usui H, Kojima H
    26th International Symposium on Rarefied Gas Dynamics, 2008/7/21-25, Kyoto, 784-789, 2008  Peer-reviewed
  • K. Ueno, I. Funaki, T. Kimura, T. Ayabe, H. Yamakawa, H. Horisawa
    44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, 2008  Peer-reviewed
  • S. Kawamura, M. Ando, T. Nakamura, K. Tsubono, T. Tanaka, I. Funaki, N. Seto, K. Numata, S. Sato, K. Ioka, N. Kanda, T. Takashima, K. Agatsuma, T. Akutsu, T. Akutsu, K.-S. Aoyanagi, K. Arai, Y. Arase, A. Araya, H. Asada, Y. Aso, T. Chiba, T. Ebisuzaki, M. Enoki, Y. Eriguchi, M.-K. Fujimoto, R. Fujita, M. Fukushima, T. Futamase, K. Ganzu, T. Harada, T. Hashimoto, K. Hayama, W. Hikida, Y. Himemoto, H. Hirabayashi, T. Hiramatsu, F.-L. Hong, H. Horisawa, M. Hosokawa, K. Ichiki, T. Ikegami, K.T. Inoue, K. Ishidoshiro, H. Ishihara, T. Ishikawa, H. Ishizaki, H. Ito, Y. Itoh, S. Kamagasako, N. Kawashima, F. Kawazoe, H. Kirihara, N. Kishimoto, K. Kiuchi, S. Kobayashi, K. Kohri, H. Koizumi, Y. Kojima, K. Kokeyama, W. Kokuyama, K. Kotake, Y. Kozai, H. Kudoh, H. Kunimori, H. Kuninaka, K. Kuroda, K.-I. Maeda, H. Matsuhara, Y. Mino, O. Miyakawa, S. Miyoki, Y. Morimoto, T. Morioka, T. Morisawa, S. Moriwaki, S. Mukohyama, M. Musha, S. Nagano, I. Naito, N. Nakagawa, K. Nakamura, H. Nakano, K. Nakao, S. Nakasuka, Y. Nakayama, E. Nishida, K. Nishiyama, A. Nishizawa, Y. Niwa, M. Ohashi, N. Ohishi, M. Ohkawa, A. Okutomi, K. Onozato, K. Oohara, N. Sago, M. Saijo, M. Sakagami, S.-I. Sakai, S. Sakata, M. Sasaki, T. Sato, M. Shibata, H. Shinkai, K. Somiya, H. Sotani, N. Sugiyama, Y. Suwa, H. Tagoshi, K. Takahashi, K. Takahashi, T. Takahashi, H. Takahashi, R. Takahashi, R. Takahashi, A. Takamori, T. Takano, K. Taniguchi, A. Taruya, H. Tashiro, M. Tokuda, M. Tokunari, M. Toyoshima, S. Tsujikawa, Y. Tsunesada, K.-I. Ueda, M. Utashima, H. Yamakawa, K. Yamamoto, T. Yamazaki, J. Yokoyama, C.-M. Yoo, S. Yoshida, T. Yoshino
    Journal of Physics: Conference Series, 122, 2008  Peer-reviewed
  • 南祐一郎, 佐々木大祐, 山川宏, 中村武恒, 船木一幸, 小嶋浩嗣, 上田義勝
    第51回宇宙科学技術連合講演会・ 札幌, Oct, 2007  
  • 南祐一郎, 山川宏, 小嶋浩嗣, 上田義勝, 中村武恒, 船木一幸
    日本地球惑星科学連合大会・ J250-P001(ポスター)・ 幕張メッセ・ 千葉, May, 2007  
  • 船木一幸, 中野正勝, 中山宜典, 梶村好宏
    宇宙航空研究開発機構特別資料 JAXA-SP-, (06-019) 75-81, Mar 30, 2007  
  • Seto Naoki
    Meeting Abstracts of the Physical Society of Japan, 62, 2007  
  • Ikkoh Funaki, Kazuma Ueno, Toshiyuki Kimura, Hideyuki Horisawa, Hiroshi Yamakawa
    Collection of Technical Papers - 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference, 8 8410-8418, 2007  
    Magnetic sail (MagSail) is a deep space propulsion system, which uses the energy of the solar wind. MagSail produces an artificial magnetic field and captures the energy of the solar wind plasma to propel a spacecraft in the direction of the solar wind. In order to conduct a scale-model experiment of the plasma flow of a MagSail, we developed a solar wind simulator based on a magnetoplasmadynamic arcjet in a quasi-steady mode of about 1 ms duration. Based on scaling considerations, a solenoidal coil was designed and it was immersed into the plasma flow. In this setup, a magnetic cavity, which is similar to that of the geomagnetic field, was observed, although the magnetic cavity of MagSail is usually much smaller than the geomagnetic cavity of the Earth. It was experimentally confirmed that MagSail could produce thrust even in such ion Larmor scale. Also, an extension of this MagSail experiment to MagSail with plasma jet (M2P2 or MPS) is in progress, and some preliminary results are reported.
  • 木村俊之, 上野一磨, 船木一幸, 山川宏, 堀澤秀之
    宇宙科学技術連合講演会講演集(CD-ROM), 51st 2E17, 2007  
  • 上野一磨, 木村俊之, 船木一幸, 堀澤秀之, 山川宏
    平成18年度宇宙輸送シンポジウム, Jan-07 相模原、2007, 2007  Peer-reviewed
  • 木村俊之, 船木一幸, 山川宏, 堀澤秀之
    平成18年度宇宙輸送シンポジウム, Jan-07,相模原, 2007, 2007  Peer-reviewed
  • 船木一幸, 山川宏
    マグセイル・ワーキンググループについて,平成18 年度宇宙プラズマ研究会2007/3/22-23相模原2007, 2007  Peer-reviewed
  • 上野一磨, 木村俊之, 船木一幸, 堀澤秀之, 山川宏
    平成18年度宇宙プラズマ研究会, 2007/3/22-23, 相模原, 2007, 2007  Peer-reviewed
  • 船木一幸, 山川宏
    平成18年度衝撃波シンポジウム, Mar-07, 北九州, 2007, 2007  Peer-reviewed
  • 山川宏, 船木一幸
    航空原動機宇宙推進講演会, 2007/3/1-2, 姫路, 2007, 2007  Peer-reviewed
  • I. Funaki, H. Yamakawa
    宇宙航空研究開発機構・情報・計算工学センター・衛星環境プラズマ数値シミュレーションワークショップ報告書,宇宙航空研究開発機構特別資料,JAXA-SP-06-014, pp. 100-110, 2007  Peer-reviewed
  • H. Nishida, H. Ogawa, I. Funaki, H. Yamakawa, Y. Inatani
    宇宙航空研究開発機構・情報・計算工学センター・衛星環境プラズマ数値シミュレーションワークショップ報告書, 宇宙航空研究開発機構特別資料,JAXA-SP-06-014, pp. 111-121, 2007  Peer-reviewed
  • 上野一磨, 木村俊之, 船木一幸, 清水幸夫, 山川宏, 堀澤秀之
    衝撃波シンポジウム講演論文集, 2005 333-334, Mar 16, 2006  
  • 船木一幸, 山川宏, 藤田和央
    磁気プラズマセイルの推力発生メカニズムの解明,JAXA RR (Research and Development Report) -05-014, Edited by I. Funaki and H. Yamakawa, 2006  Peer-reviewed
  • 小嶋秀典, 船木一幸, 清水幸夫, 山川宏
    ISAS Research Note, Vol. 807, 2006  Peer-reviewed
  • I. Funaki, H. Kojima, Y. Shimizu, Y. Nakayama, K. Toki, H. Yamakawa, S. Shinohara
    JAXA RR (Research and Development Report) -05-014, Edited by I. Funaki and H. Yamakawa, 2006  Peer-reviewed
  • Ikkoh Funaki, Hiroshi Yamakawa, Yukio Shimizu, Yoshinori Nakayama, Hideyuki Horisawa, Kazuma Ueno, Toshiyuki Kimura
    Collection of Technical Papers - AIAA/ASME/SAE/ASEE 42nd Joint Propulsion Conference, 11 8669-8682, 2006  Peer-reviewed
    In order to simulate the interaction between the artificially deployed magnetic field produced around a magnetic sail spacecraft and the solar wind, a laboratory simulator in a space chamber was designed. As a solar wind simulator, a high-power magnetoplasmadynamic arcjet was operated in a quasisteady mode of about 0.8 ms duration to provide a high-speed hydrogen plasma plume of about 0.7 m in diameter, which is accelerated to above 20 km/s with high plasma densities around 1017-1019 m-3. Into this high-density and high-velocity plasma jet, a small coil of 2-cm-diameter was immersed to obtain 1.9-T magnetic field at the center of the coil. These devices are operation in a large 2-m-diameter space chamber, and the formation of a magnetic cavity was observed around the coil. From the analysis of scaling parameters, it is found that the laboratory experiment of the plasma flow around the coil of the magnetic sail corresponds to a sub-Newton-class magnetic sail.
  • 船木一幸, 山川宏, 磁気プラズマセイル研究会
    宇宙科学シンポジウム2006/12/21-22, 相模原2006, 2006  Peer-reviewed
  • 船木一幸, 山川宏編
    JAXA-RR-05-014, 1-63, Jan, 2006  
  • R. Asahi, I. Funaki, H. Yamakawa, K. Fujita
    ISAS Research Note, Vol. 789, 2005  Peer-reviewed
  • T. Minami, I. Funaki, H. Yamakawa, Y. Nakayama
    ISAS Research Note, Vol. 790, 2005  Peer-reviewed

Major Books and Other Publications

 6
  • Ikkoh Funaki, Hiroshi Yamakawa
    In-Tech, Mar, 2012 (ISBN: 9789535103394)

Presentations

 561

Research Projects

 28

Industrial Property Rights

 4