はやぶさ2プロジェクトチーム

Takahiro Ito

  (伊藤 琢博)

Profile Information

Affiliation
Assistant Professor, Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency

Researcher number
30872444
ORCID ID
 https://orcid.org/0000-0003-1491-1940
J-GLOBAL ID
202001000326595612
researchmap Member ID
R000000445

Major Papers

 21
  • Takahiro, Satoshi Ueda, Kentaro Yokota, Shin-ichiro Sakai, Shujiro Sawai, Mikihiro Sugita, Yusuke Shibasaki, Yoshihiro Mukumoto, Daisuke Watabe, Seiichi Shimizu
    Journal of Guidance, Control, and Dynamics, (accepted), Jan, 2025  Peer-reviewedLead authorCorresponding author
  • Takahiro Ito
    Astronomy & Astrophysics, 682(A38), Feb, 2024  Peer-reviewedLead authorLast authorCorresponding author
  • Takahiro Ito, Shin-ichiro Sakai
    Journal of Guidance, Control, and Dynamics, 46(4) 695-708, Apr, 2023  Peer-reviewedLead authorCorresponding author
  • Takahiro Ito, Shin-ichiro Sakai
    Journal of Guidance, Control, and Dynamics, 44(4) 854-861, Apr, 2021  Peer-reviewedLead authorCorresponding author
    In this study the throttled explicit guidance (TEG) scheme is extended to the fuel optimal pinpoint-landing problem under a bounded thrust magnitude. The study provides a review of the fuel-optimal control problem and its solution under a bounded thrust magnitude. It describes the theoretical analysis of the thrust magnitude switching function performed to approximate the function in a simpler form by applying certain reasonable assumptions for a pinpoint landing problem. The study also elaborates the TEG scheme for a bounded thrust magnitude problem and describes the testing of the TEG scheme via simulations for lunar pinpoint landing. In the considered fuel-optimal control problem, it is assumed that the gravity field is uniform, atmospheric effects are negligible, and the final time is free.
  • T. Ito, T. Yamamoto, T. Nakamura, H. Habu, H. Ohtsuka
    Acta Astronautica, 170 206-223, May, 2020  Peer-reviewedLead authorCorresponding author
    © 2019 IAA This paper investigates the launch capability of the SS-520 as a CubeSat launch vehicle. The SS-520 was developed by JAXA originally as a two-stage, spin-stabilized, solid-propellant sounding rocket. With less than 2.6 tons in total mass and 10 m in length, the SS-520-5 successfully launched a single 3U-sized CubeSat into orbit on February 3, 2018. The SS-520-5 obtained its capability as a CubeSat launch vehicle by installing a 3rd stage solid motor in addition to the RCS between the 1st and 2nd stages. However, its launch capability was limited due to its rocket system configuration. In order to pursue the SS-520's launch capability, two effective modifications from the SS-520-5 are proposed: thrust enhancement of the 1st stage motor and installation of an additional RCS between the 2nd and 3rd stages. The framework of launch capability analysis is established by a multi-objective genetic algorithm (MOGA), where its two objectives are selected as the altitudes of perigee and apogee. The analysis reveals that the two proposed modifications to the SS-520-5 work effectively but differently. The 10% increase of the 1st stage enhancement is particularly effective when the target altitude of perigee is low (e.g., 200 km), whereas the installment of the additional RCS with 30 kg increases accessibility to a much higher altitude of perigee, even to circular orbit reaching altitudes of 550 km for a 1U-sized CubeSat and 280 km for a 6U-sized CubeSat. The simultaneous application of both modifications would result in launch capability able to deliver a 10-kg payload. From a more general perspective, the results in this paper suggest that it is possible for a very small launch vehicle (VSLV) of the 3-ton class and 10 m in length to deliver a 10-kg-class payload into low Earth orbit.

Major Misc.

 76

Major Presentations

 32

Teaching Experience

 1

Research Projects

 2

Industrial Property Rights

 2

Major Social Activities

 22

Media Coverage

 2