Curriculum Vitaes

Takao Nakagawa

  (中川 貴雄)

Profile Information

Affiliation
教授, 宇宙科学研究所・宇宙物理学研究系, 国立研究開発法人宇宙航空研究開発機構
Professor, Graduate School of Science, Department of Physics, The University of Tokyo
Degree
(BLANK)(The University of Tokyo)
(BLANK)(The University of Tokyo)

J-GLOBAL ID
200901060914122911
researchmap Member ID
1000363024

External link

Committee Memberships

 3

Papers

 382
  • Kosei Matsumoto, Peter Camps, Maarten Baes, Frederik De Ceuster, Keiichi Wada, Takao Nakagawa, Kentaro Nagamine
    Astronomy & Astrophysics, Oct, 2023  
  • Naoki Isobe, Hiroshi Nagai, Motoki Kino, Shunsuke Baba, Takao Nakagawa, Yuji Sunada, Makoto Tashiro
    The Astrophysical Journal, Aug 1, 2023  
  • Youichi Ohyama, Shusuke Onishi, Takao Nakagawa, Kosei Matsumoto, Naoki Isobe, Mai Shirahata, Shunsuke Baba, Kazushi Sakamoto
    The Astrophysical Journal, Jul 1, 2023  
  • Taichi Uyama, Charles Beichman, Masayuki Kuzuhara, Markus Janson, Takayuki Kotani, Dimitri Mawet, Bun’ei Sato, Motohide Tamura, Hiroyuki Tako Ishikawa, Bryson Cale, Thayne Currie, Hiroki Harakawa, Thomas Henning, Teruyuki Hirano, Klaus Hodapp, Yasunori Hori, Masato Ishizuka, Shane Jacobson, Yui Kasagi, Eiichiro Kokubo, Mihoko Konishi, Tomoyuki Kudo, Takashi Kurokawa, Nobuhiko Kusakabe, Jungmi Kwon, Masahiro Machida, Takao Nakagawa, Norio Narita, Jun Nishikawa, Masahiro Ogihara, Masashi Omiya, Takuma Serizawa, Akitoshi Ueda, Sébastien Vievard, Ji Wang
    The Astronomical Journal, 165(4) 162-162, Mar 17, 2023  
    Abstract The Subaru telescope is currently performing a strategic program (SSP) using the high-precision near-infrared (NIR) spectrometer IRD to search for exoplanets around nearby mid/late M dwarfs via radial velocity (RV) monitoring. As part of the observing strategy for the exoplanet survey, signatures of massive companions such as RV trends are used to reduce the priority of those stars. However, this RV information remains useful for studying the stellar multiplicity of nearby M dwarfs. To search for companions around such “deprioritized” M dwarfs, we observed 14 IRD-SSP targets using Keck/NIRC2 with pyramid wave-front sensing at NIR wavelengths, leading to high sensitivity to substellar-mass companions within a few arcseconds. We detected two new companions (LSPM J1002+1459 B and LSPM J2204+1505 B) and two new candidates that are likely companions (LSPM J0825+6902 B and LSPM J1645+0444 B), as well as one known companion. Including two known companions resolved by the IRD fiber injection module camera, we detected seven (four new) companions at projected separations between ∼2 and 20 au in total. A comparison of the colors with the spectral library suggests that LSPM J2204+1505 B and LSPM J0825+6902 B are located at the boundary between late M and early L spectral types. Our deep high-contrast imaging for targets where no bright companions were resolved did not reveal any additional companion candidates. The NIRC2 detection limits could constrain potential substellar-mass companions (∼10–75 MJup) at 10 au or further. The failure with Keck/NIRC2 around the IRD-SSP stars having significant RV trends makes these objects promising targets for further RV monitoring or deeper imaging with the James Webb Space Telescope to search for smaller-mass companions below the NIRC2 detection limits.
  • Hyunjin Shim, Ho Seong Hwang, Woong-Seob Jeong, Yoshiki Toba, Minjin Kim, Dohyeong Kim, Hyunmi Song, Tetsuya Hashimoto, Takago Nakagawa, Ambra Nanni, William J. Pearson, Toshinobu Takagi
    The Astronomical Journal, Feb 1, 2023  

Misc.

 674
  • 佐野圭, 松浦周二, 大西陽介, 松原英雄, JEONG Woong-Seob, PYO Jeonghyun, KIM Il-Jong, SEO Hyun Jong, HAN Wonyong, LEE DaeHee, MOON Bongkon, PARK Wonkee, PARK Younsik, KIM MinGyu, 松本敏雄, 中川貴雄, 白籏麻衣, 新井俊明, 津村耕司, 家中信幸
    日本天文学会年会講演予稿集, 2019, 2019  
  • Shunsuke Baba, Takao Nakagawa, Fumihiko Usui, Mitsuyoshi Yamagishi, Takashi Onaka
    Publications of the Astronomical Society of Japan, 71(1), Jan 1, 2019  
    We present a new calibration for the second-order light contamination in the near-infrared grism spectroscopy with the Infrared Camera aboard AKARI, specifically for the post-cryogenic phase of the satellite (Phase 3). Following our previous work on the cryogenic phase (Phases 1 and 2), the wavelength and spectral response calibrations were revised. Unlike Phases 1 and 2, during Phase 3 the temperature of the instrument was not stable and gradually increased from 40 to 47 K. To assess the effect of the temperature increase, we divided Phase 3 into three sub-phases and performed the calibrations separately. As in Phases 1 and 2, we confirmed that there was contamination due to the wavelength dependence of the refractive index of the grism material in every sub-phase. The wavelength calibration curves for the three sub-phases coincided with each other and did not show any significant temperature dependence. The response decreased with temperature by ∼10% from the beginning to the end of Phase 3. We approximated the temperature dependence of the response at a linear relation and derived a correction factor as a function of temperature. The relative fraction of the second-order light contamination to the first-order light was found to be 25% smaller than that in Phases 1 and 2.
  • 松浦 周二, 佐野 圭, 橋本 遼, 児島 智哉, 太田 諒, 瀧本 幸司, 檀林 健太, 山田 康博, 鈴木 紘子, 古谷 正希, 津村 耕司, 高橋 葵, 松本 敏雄, 和田 武彦, 中川 貴雄, James Bock, CIBER collaboration, Matsuura Shuji, Sano Kei, Hashimoto Ryo, Kojima Tomoya, Ohta Ryo, Takimoto Kohji, Danbayashi Kenta, Yamada Yasuhiro, Suzuki Hiroko, Furutani Masaki, Tsumura Koji, Takahashi Aoi, Matsumoto Toshio, Wada Takehiko, Nakagawa Takao, James Bock, CIBER collaboration
    観測ロケットシンポジウム2018 講演集 = Proceedings of Sounding Rocket Symposium 2018, Jul, 2018  
    第1回観測ロケットシンポジウム(2018年7月17日-18日. 宇宙航空研究開発機構宇宙科学研究所(JAXA)(ISAS)), 相模原市, 神奈川県著者人数: 16名ほか資料番号: SA6000127021レポート番号: Ⅵ-2
  • Zachary C. Long, Eiji Akiyama, Michael Sitko, Rachel B. Fernandes, Korash Assani, Carol A. Grady, Michel Cure, William C. Danchi, Ruobing Dong, Misato Fukagawa, Yasuhiro Hasegawa, Jun Hashimoto, Thomas Henning, Shu Ichiro Inutsuka, Stefan Kraus, Jungmi Kwon, Carey M. Lisse, Hauyu Baobabu Liu, Satoshi Mayama, Takayuki Muto, Takao Nakagawa, Michihiro Takami, Motohide Tamura, Thayne Currie, John P. Wisniewski, Yi Yang
    Astrophysical Journal, 858(2), May 10, 2018  
    We present ALMA 0.87 mm continuum, HCO J = 4-3 emission line, and CO J = 3-2 emission line data of the disk of material around the young, Sun-like star PDS 70. These data reveal the existence of a possible two-component transitional disk system with a radial dust gap of 0.″42 ±0.″05, an azimuthal gap in the HCO J = 4-3 moment zero map, as well as two bridge-like features in the gas data. Interestingly these features in the gas disk have no analog in the dust disk making them of particular interest. We modeled the dust disk using the Monte Carlo radiative transfer code HOCHUNK3D using a two-disk component. We find that there is a radial gap that extends from 15 to 60 au in all grain sizes, which differs from previous work. + +
  • Yano Kenichi, Nakagawa Takao, Malkan Matthew, Isobe Naoki, Shirahata Mai, Baba Shunsuke, Doi Ryosuke, Bhalotia Vanshree
    (17) 379-382, Mar 9, 2018  
    The 4th AKARI International Conference: The Cosmic Wheel and the Legacy of the AKARI archive: from galaxies and stars to planets and life (October 17-20, 2017. The University of Tokyo), Bunkyo-ku, Tokyo, JapanWe made systematic observations of the HI Br alpha (4.05 micrometers) and Br beta (2.63 micrometers) lines in 52 nearby (z less than 0.3) ULIRGs with AKARI. Our observations show that ULIRGs have a tendency to indicate higher Br beta/Br alpha line ratios than those observed in Galactic HII regions, and three galaxies in the observed sample show the anomaly of the Br beta/Br alpha line ratios (in the order of 1.0), which are significantly higher than that of case B (0.565). The high Br beta/Br alpha line ratios cannot be explained by the combination of the dust extinction and the case B, since dust extinction reduces the ratio. We simulate HII regions in the ULIRGs with the Cloudy code, and show that the high Br beta/Br alpha line ratios can be explained with the combination of the optically thick Br alpha line and the optically thin Br beta line. To achieve the column density large enough to make the Br alpha line optically thick, the gas density is required as high as n in the order of 10(exp 8) cm(exp -3). Hence our results suggest that star-formation activity in ULIRGs occurs preferentially in high-density clouds.Physical characteristics: Original contains color illustrations
  • Oyama Yoichi, Wada Takehiko, Matsuhara Hideo, Takagi Toshinobu, Malkan M., Goto Tomotsugu, Egami Eiichi, Lee Hyung Mok, Im Myung, Kim J. -H., Pearson Chris, Inami Hanae, Oyabu Shinki, Usui Fumihiko, Burgarella Denis, Mazyed F., Imanishi Masatoshi, Jeong Woong-Seob, Miyaji Takamitsu, DiazTello J., Nakagawa Takao
    (17) 359-362, Mar 9, 2018  
    The 4th AKARI International Conference: The Cosmic Wheel and the Legacy of the AKARI archive: from galaxies and stars to planets and life (October 17-20, 2017. The University of Tokyo), Bunkyo-ku, Tokyo, JapanWe aim to study star-forming galaxies by using a blind spectroscopic survey at mid-infrared (MIR) wavelengths to understand evolution of their star formation rate (SFR) and specific SFR (SFR per stellar mass) up to z in the order of 0.5, by paying particular attention to their Polycyclic Aromatic Hydrocarbon (PAH) properties. We conducted a low-resolution (R approximately equal to 50) slitless spectroscopic survey at 5-13 micrometers of 9 micrometers flux-selected sources (approximately greater than 0.3 mJy) around the North Ecliptic Pole with the Infrared Camera (IRC) onboard AKARI. We identified 48 PAH galaxies with PAH 6.2, 7.7, and 8.6 micrometers features at z approximately less than 0.5. The rest-frame optical-MIR spectral energy distributions (SEDs) based on CFHT and AKARI/IRC imaging are produced and analyzed in conjunction with the PAH spectroscopy. The rest-frame SEDs of all PAH galaxies have a universal shape with stellar and 7.7 micrometers (PAH) bumps, except that the PAH enhancement (luminosity ratio of the 7.7 micrometers PAH feature over the 3.5 micrometers stellar bump) significantly varies as a function of the PAH luminosities. We identified a PAH-enhanced population at z approximately less than 0.35, whose SEDs and luminosities are typical of luminous infrared galaxies. They show particularly larger PAH enhancement at high luminosity, implying that they are vigorous star-forming galaxies with elevated specific SFR. Our composite starburst model that combines a young and dusty starburst with a very old population can successfully reproduce most SED characteristics.Number of authors: 27Physical characteristics: Original contains color illustrations
  • Doi Ryosuke, Nakagawa Takao, Isobe Naoki, Baba Shunsuke, Yano Kenichi, Yamagishi Mitsuyoshi
    (17) 325-327, Mar 9, 2018  
    The 4th AKARI International Conference: The Cosmic Wheel and the Legacy of the AKARI archive: from galaxies and stars to planets and life (October 17-20, 2017. The University of Tokyo), Bunkyo-ku, Tokyo, JapanWe observed near-infrared (NIR) absorption bands in 48 ultraluminous infrared galaxies (ULIRGs) to study physical conditions in star-forming regions. We focus on two absorption features in this study: the H2O ice absorption at 3.0 micrometers, which traces dark clouds (A(sub V) greater than a few mag), and the aliphatic carbon absorption at 3.4 micrometers, which traces diffuse clouds (A(sub V) less than 1 mag). Spectral analysis shows that optical depths of H2O ice and aliphatic carbon in most of the ULIRGs are similar to those in diffuse clouds in the Galaxy when normalized by silicate optical depth, and ULIRGs do NOT consist of dark clouds. This suggests that the star-forming regions in ULIRGs have more intense radiation field than typical dark clouds in the Galaxy. We also examined the profile of H2O ice for objects showing relatively deep absorption. The observed profiles of H2O ice in ULIRGs sometimes show a sign of saturated absorption, while the continuum emission is not completely absorbed by the feature. This suggests that the dark clouds, where H2O ice resides, do not cover the background sources entirely. These results imply that the dark clouds are sparsely distributed in ULIRGs.Physical characteristics: Original contains color illustrations
  • Maeshima Hiroshi, Kojima Takuya, Nakagawa Takao, Kwon Jungmi, Takita Satoshi
    (17) 313-316, Mar 9, 2018  
    The 4th AKARI International Conference: The Cosmic Wheel and the Legacy of the AKARI archive: from galaxies and stars to planets and life (October 17-20, 2017. The University of Tokyo), Bunkyo-ku, Tokyo, JapanThe far-infrared excess of stars with protoplanetary disks and debris disks is expected to provide us with key information on dust dissipation process in the outer disks. In order to reveal the typical behavior of the disks including objects fainter than the current survey limit, we stacked far-infrared images cut out from the image of AKARI all-sky survey in the 90 micrometers band (WIDE-S) on the basis of known object positions. We carried out two type of studies: one is the study on protoplanetary disks based on observations of T Tauri stars, and the other is the study on debris disks based on observations of A-type main sequence stars. Our studies show that, as disks evolve from protoplanetary disks to debris disks, the dust dissipation timescale becomes longer. This suggests that with disk evolution the dominant dust component changes from primordial dust, which remains small without growing into planetesimals, to secondary dust, which is formed by collisional destruction of planetesimals.Physical characteristics: Original contains color illustrations
  • Baba Shunsuke, Nakagawa Takao, Isobe Naoki, Shirahata Mai
    (17) 217-220, Mar 9, 2018  
    The 4th AKARI International Conference: The Cosmic Wheel and the Legacy of the AKARI archive: from galaxies and stars to planets and life (October 17-20, 2017. The University of Tokyo), Bunkyo-ku, Tokyo, JapanWe analyzed the 4.67 micrometers CO ro-vibrational absorption band in nearby ten active galactic nuclei (AGNs) observed with AKARI and Spitzer by fitting a plane-parallel local thermal equilibrium gas model. We found that the CO gas is warm (200-500 K) with a large column density (N(sub H) less than in the order of 10(exp 23) cm-2). Such a large column of warm gas is not achievable with UV heating or shock heating in starbursts. The most convincing heating source is X-ray photons emitted from the nuclei, which can produce warm gas of N(sub H) in the order of 10(exp 24) cm-2. This indicates that the region probed by the CO absorption is in the vicinity of the nuclei. The hydrogen column density estimated from the CO band is smaller than that inferred from X-ray observations. The observed deep absorption implies that the gas is close to the continuum source. We suggest that the probed region is outside the X-ray emitting region and just in front of the dust sublimation layer, which can be designated as the inner rim of the obscuring material around the AGNs.Physical characteristics: Original contains color illustrations
  • Koyama Yusei, Matsuki Yasuhiro, Koyama Shuhei, Nakagawa Takao, Matsuhara Hideo, Takita Satoshi, Yamashita Takuji, MorokumaMatsui Kana, Kodama Tadayuki, Shimakawa Rhythm, Namiki Shigeru, Hayashi Masao, Tadaki Kenichi
    (17) 205-208, Mar 9, 2018  
    The 4th AKARI International Conference: The Cosmic Wheel and the Legacy of the AKARI archive: from galaxies and stars to planets and life (October 17-20, 2017. The University of Tokyo), Bunkyo-ku, Tokyo, JapanWe present our continuous efforts over the last decade - since the launch of AKARI - to unveil the environmental impacts on dust properties of galaxies in the local and distant universe by making full use of the AKARI 'all-sky' and 'pointed' observations. We first introduce our new result on the environmental effects on the dust temperature (T(sub dust)) of local star-forming galaxies. By performing stacking analysis of the AKARI FIS all-sky map (at the positions of SDSS star-forming galaxies in different environments), we find that T(sub dust) of galaxies increases with increasing environmental density, supporting a cold dust stripping scenario in high-density environments. We also present the results from our systematic, wide-field MIR 'pointed' observations of distant clusters with AKARI/IRC, in combination with our Subaru H alpha observing campaign. Taking advantage of the wide-field coverage of AKARI (and Subaru), we revealed that dust-obscured galaxies are most frequently triggered at the periphery of distant clusters. The coincidence of the environment of dusty galaxies and that of galaxy color transition suggests a strong link between dusty galaxies and the process of environmental quenching during the course of cluster-scale assembly.Physical characteristics: Original contains color illustrations
  • Kokusho Takuma, Kaneda Hidehiro, Yamagishi Mitsuyoshi, Naito Masataka, Imai Tadashi, Katayama Haruyoshi, Nakagawa Takao, Onaka Takashi
    (17) 399-401, Mar 9, 2018  
    SPICA Science Conference from Exoplanets to Distant Galaxies: SPICA's New Window on the Cool Universe (June 18-21, 2013. Ito Hall, the University of Tokyo), Bunkyou-ku, Tokyo, JapanFor optical testing of the SPICA telescope, we require sub-aperture stitching interferometry, because an accurate autocollimating flat mirror (ACF) with a size comparable to the telescope (3.2 m) is hardly available. Therefore we use small ACFs which rotate with respect to the optical axis of the telescope to cover the full pupil of the telescope. We verified the feasibility of the sub-aperture stitching interferometry by performing real optical measurement. At cryogenic temperatures, in particular, ACFs can be deformed due to thermal contraction. Since surface figure errors of ACFs can make errors in the sub-aperture stitching result, we propose a new method to mitigate the effects of the ACF errors. We evaluated the feasibility of this method by performing an experimental study utilizing the 800-mm telescope and a 300-mm ACF with a designed large deformation. As a result, we find that this method is applicable for the optical test of the telescope, although it needs to be further developed.Physical characteristics: Original contains color illustrations
  • Kotani Takayuki, Enya Keigo, Kaneda Hidehiro, Matsuo Taro, Ikoma Masahiro, Ito Yoichi, Ida Shigeru, Haze Kanae, Oyabu Shinki, Ishihara Daisuke, Sorahana Satoko, Honda Mitsuhiko, Inoue Akio K., Nagasawa Makiko, Takami Michihiro, Fukagawa Misato, Yamashita Takuya, Narita Norio, Tamura Motohide, Oseki Shinji, Takeuchi Nami, Nakagawa Takao, Matsuhara Hideo, Kataza Hirokazu, Kawada Mitsunobu, Wada Takehiko, Tsumura Koji, Isobe Naoki, Mita Makoto, Komatsu Keiji, Uchida Hideki, Mitani Shinji, Sakai Shinichiro, Sarugaku Yuki, Arimatsu Ko, Tao Chihiro
    (17) 339-342, Mar 9, 2018  
    SPICA Science Conference from Exoplanets to Distant Galaxies: SPICA's New Window on the Cool Universe (June 18-21, 2013. Ito Hall, the University of Tokyo), Bunkyou-ku, Tokyo, JapanSPICA Coronagraph Instrument (SCI) is an instrument dedicated for direct detection and characterization of exoplanets and also for other science that needs a high-contrast imaging and spectroscopic capability in the near to mid-infrared wavelengths. We will present the major science cases for exoplanets from the instrument proposal of SCI. Thanks to the high-contrast imaging and spectroscopic capability, we will be able to tackle the various problems on the exoplanet science. SCI will give us the unique opportunity to observationally understand the formation process of Jovian planets, which is still poorly understood, by measuring temperatures of young Jovian planets. Spectroscopy of planet atmospheres will enable us to reveal the chemical compositions by measuring the abundances of various important molecules such as CO, CH4, NH3, H2O, H2 etc. We will also access to the structure of Jovian atmosphere, for example the existence of thermal inversion which is known for our Solar system planets. Furthermore, the direct detection of icy giants around early-type stars with SCI will open a new window to investigate these enigmatic planets.The clerical error of an author's name: T. KOMATSUNumber of authors: 57Physical characteristics: Original contains color illustrations
  • Gandhi Poshak, Russell D. M., Casella P., Malzac J., Nakagawa Takao
    (17) 239-243, Mar 9, 2018  
    SPICA Science Conference from Exoplanets to Distant Galaxies: SPICA's New Window on the Cool Universe (June 18-21, 2013. Ito Hall, the University of Tokyo), Bunkyou-ku, Tokyo, JapanThe time domain remains, in many respects, the least explored of parameter spaces in astronomical studies. The purpose of this article is to encourage the SPICA community to consider the potential of rapid infrared timing observations. The specific example considered is that of variable emission from relativistic jets in compact accreting objects, whose formation and powering mechanisms we still do not understand. Infrared observations have the potential to give us fundamental insight on the conditions required for jet formation in accreting stellar-mass black holes. This is because particle acceleration is thought to be magnetically-driven, and the spectral transition between optically-thin and self-absorbed jet synchrotron radiation lies in the infrared. We review recent observations from WISE showing that we have the capability to measure key physical parameters of the jet, and their time-dependence on rapidly-changing conditions in the accretion flow around the black hole (on timescales of just a few seconds). SPICA will provide a breakthrough in this field because of its sensitivity and broadband coverage, and we detail an example SPICA observation on short (tens of milliseconds) timescales. We believe that SPICA has the potential to make great impact on time domain science, and we discuss some technical requirements that will enable this.Physical characteristics: Original contains color illustrations
  • Yano Kenichi, Nakagawa Takao, Isobe Naoki, Shirahata Mai
    (17) 117-119, Mar 9, 2018  
    SPICA Science Conference from Exoplanets to Distant Galaxies: SPICA's New Window on the Cool Universe (June 18-21, 2013. Ito Hall, the University of Tokyo), Bunkyou-ku, Tokyo, JapanWe carried out systematic observations of the HI recombination line Bra (4.05 μm) in nearby (z less than 0.3) ultraluminous infrared galaxies (ULIRGs), using AKARI near-infrared 2.5-5.0 μm spectroscopy. We derived star formation rates (SFRs) from the Bra line, whose observed flux is predicted to be the highest among HI recombination lines in conditions with large dust extinction (visual extinction Av greater than 15 mag) expected in ULIRGs. Using the 3.3 μm polycyclic aromatic hydrocarbon emission in addition to the Bra line as an indicator of the SFR, we estimated the contribution of the star formation to the total infrared luminosity in 51 ULIRGs. The contribution was on average 28 plus or minus4 0/o in ULIRGs optically classified as H II, while 14 plus or minus2 0/o in ULIRGs optically classified as LINER or Seyfert. This result indicates that the star formation is significantly active in H II ULIRGs and other energy source, i.e. active galactic nuclei, is needed in LINER ULIRGs.Physical characteristics: Original contains color illustrations
  • Shirahata Mai, Usuda Tomonori, Oyabu Shinki, Nakagawa Takao, Yamamura Issei
    (17) 103-105, Mar 9, 2018  
    SPICA Science Conference from Exoplanets to Distant Galaxies: SPICA's New Window on the Cool Universe (June 18-21, 2013. Ito Hall, the University of Tokyo), Bunkyou-ku, Tokyo, JapanWe provide a new physical insight on the hot molecular clouds near the nucleus of the heavily obscured AGN IRAS 01250+2832, based on the results of near-infrared high-resolution spectroscopy of gaseous CO ro-vibrational absorption lines with Subaru/IRCS+AO188. The detected CO absorption lines up to highly excited rotational levels reveal that hot dense molecular clouds exist around the AGN under the extreme physical conditions.Physical characteristics: Original contains color illustrations
  • 馬場俊介, 馬場俊介, 中川貴雄, 磯部直樹, 白旗麻衣, 道井亮介, 大西崇介
    日本天文学会年会講演予稿集, 2018, 2018  
  • 金田英宏, 芝井広, 小川博之, 中川貴雄, 松原英雄, 山田亨, 尾中敬, 河野孝太郎, 土井靖生
    日本天文学会年会講演予稿集, 2018, 2018  
  • 前嶋宏志, 道井亮介, 中川貴雄, 權靜美, 猿楽祐樹
    日本天文学会年会講演予稿集, 2018, 2018  
  • 前嶋宏志, 前嶋宏志, 中川貴雄, 小島拓也, 小島拓也, 瀧田怜, 權靜美
    日本天文学会年会講演予稿集, 2018, 2018  
  • 磯部直樹, 小山翔子, 紀基樹, 中川貴雄, 田代信, 田代信, 永井洋, PEARSON Chris
    日本天文学会年会講演予稿集, 2018, 2018  
  • 和田武彦, 金田英宏, 石原大助, 大薮進喜, 鈴木仁研, 深川美里, 國生拓摩, 川田光伸, 磯部直樹, 大坪貴文, 中川貴雄, 松原英雄, 權靜美, 長勢晃一, 山岸光義, 左近樹, 津村耕司, 芝井広
    日本天文学会年会講演予稿集, 2018, 2018  
  • 東谷千比呂, 小川博之, 中川貴雄, 松原英雄, 川田光伸, 後藤健, 竹内伸介, 西城大, 澤田健一郎, 篠崎慶亮, 佐藤洋一, 水谷忠均, 巳谷真司, 山村一誠, 芝井広
    日本天文学会年会講演予稿集, 2018, 2018  
  • 大西崇介, 大西崇介, 中川貴雄, 馬場俊介, 道井亮介, 道井亮介, 磯部直樹, 白旗麻衣, 臼田知史
    日本天文学会年会講演予稿集, 2018, 2018  
  • 山村一誠, 小川博之, 中川貴雄, 松原英雄, 山田亨, 芝井広, 金田英宏, 尾中敬, 河野孝太郎
    日本天文学会年会講演予稿集, 2018, 2018  
  • 小山舜平, 小山佑世, 山下拓時, 林将央, 鈴木智子, 並木茂朗, 松原英雄, 中川貴雄, 児玉忠恭, 嶋川里澄, 田中壱, 深川奈桜, 諸隈佳菜
    日本天文学会年会講演予稿集, 2018(2), 2018  
    Recent simulations predict that the presence of the stellar bulge suppress the efficiency of star formation (SF) in early-type galaxies, and this "morphological quenching" scenario is supported by many observations. In this study, we discuss the net effect of galaxy morphologies on the star formation efficiency (SFE) during the phase of galaxy transition, on the basis of our CO(J = 1 - 0) observations of 28 local "green valley" galaxies with the Nobeyama 45 m Radio Telescope. We observed 13 disk-dominated and 15 bulge-dominated green valley galaxies at fixed stellar mass (M-*) and star formation rate (SFR),. supplemented by 1 disk-and 6 bulge-dominated galaxies satisfying the same criteria from the xCOLD. GASS survey. By using a total of 35 green valley galaxies, we reveal that the distributions of molecular gas mass, molecular gas fraction, and SFE of green valley galaxies do not change with their morphologies, suggesting little impact of galaxy morphologies on their SFE,. and interestingly, this result is also valid for normal star-forming galaxies on the SF main sequence selected from the xCOLD. GASS galaxies. On the other hand, we find that similar to 20% of the bulge-dominated green valley galaxies do not show significant CO emission line, showing high SFEs for their M-* and SFR. These molecular gas deficient sources that are identified only in the bulge-dominated green valley galaxies may represent an important population during the quenching phase under the influence of the stellar bulge, but our results suggest that the presence of the stellar bulge does not decrease the efficiency of ongoing SF, in contrast to the prediction of the morphological quenching scenario.
  • E. Egami, S. Gallerani, R. Schneider, A. Pallottini, L. Vallini, E. Sobacchi, A. Ferrara, S. Bianchi, M. Bocchio, S. Marassi, L. Armus, L. Spinoglio, A. W. Blain, M. Bradford, D. L. Clements, H. Dannerbauer, J. A. Fernández-Ontiveros, E. González-Alfonso, M. J. Griffin, C. Gruppioni, H. Kaneda, K. Kohno, S. C. Madden, H. Matsuhara, F. Najarro, T. Nakagawa, S. Oliver, K. Omukai, T. Onaka, C. Pearson, I. Perez-Fournon, P. G. Pérez-González, D. Schaerer, D. Scott, S. Serjeant, J. D. Smith, F. F.S. Van Der Tak, T. Wada, H. Yajima
    Publications of the Astronomical Society of Australia, 35, 2018  
    With the recent discovery of a dozen dusty star-forming galaxies and around 30 quasars at z > 5 that are hyper-luminous in the infrared (μ L IR > 10 LâS™, where μ is a lensing magnification factor), the possibility has opened up for SPICA, the proposed ESA M5 mid-/far-infrared mission, to extend its spectroscopic studies toward the epoch of reionisation and beyond. In this paper, we examine the feasibility and scientific potential of such observations with SPICA's far-infrared spectrometer SAFARI, which will probe a spectral range (35-230 μm) that will be unexplored by ALMA and JWST. Our simulations show that SAFARI is capable of delivering good-quality spectra for hyper-luminous infrared galaxies at z = 5-10, allowing us to sample spectral features in the rest-frame mid-infrared and to investigate a host of key scientific issues, such as the relative importance of star formation versus AGN, the hardness of the radiation field, the level of chemical enrichment, and the properties of the molecular gas. From a broader perspective, SAFARI offers the potential to open up a new frontier in the study of the early Universe, providing access to uniquely powerful spectral features for probing first-generation objects, such as the key cooling lines of low-metallicity or metal-free forming galaxies (fine-structure and H2 lines) and emission features of solid compounds freshly synthesised by Population III supernovae. Ultimately, SAFARI's ability to explore the high-redshift Universe will be determined by the availability of sufficiently bright targets (whether intrinsically luminous or gravitationally lensed). With its launch expected around 2030, SPICA is ideally positioned to take full advantage of upcoming wide-field surveys such as LSST, SKA, Euclid, and WFIRST, which are likely to provide extraordinary targets for SAFARI. 13
  • 大塚清見, 恒松正二, 金尾憲一, 楢崎勝弘, 篠崎慶亮, 東谷千比呂, 山本亮, 山崎典子, 満田和久, 中川貴雄, 南雄人
    低温工学・超電導学会講演概要集, 97th, 2018  
  • Tomo Goto, Nagiosa Oi, Ece Kilerci Eser, Rieko Momose, Ting-Chi Huang, Yousuke Utsumi, Hideo Matsuhara, Yoshiki Toba, Youichi Ohyama, Toshinobu Takagi, Takehiko Wada, Matthew Malkan, Takao Nakagawa, Seong Jin Kim, the AKARI NEP team
    (17) 189-196, Dec 7, 2017  
    Understanding infrared (IR) luminosity is fundamental to understanding the cosmic star formation history and AGN evolution. Japanese infrared satellite, AKARI, provided unique data sets to probe this both at low and high redshift; the AKARI all sky survey in 6 bands (9-160 $\mu$m), and the AKARI NEP survey in 9 bands (2-24$\mu$m). The AKARI performed all sky survey in 6 IR bands (9, 18, 65, 90, 140, and 160 $\mu$m) with 3-10 times better sensitivity than IRAS, covering the crucial far-IR wavelengths across the peak of the dust emission. Combined with a better spatial resolution, we measure the total infrared luminosity ($L_{TIR}$) of individual galaxies, and thus, the total infrared luminosity density of the local Universe much more precisely than previous work. In the AKARI NEP wide field, AKARI has obtained deep images in the mid-infrared (IR), covering 5.4 deg$^2$. However, our previous work was limited to the central area of 0.25 deg$^2$ due to the lack of deep optical coverage. To rectify the situation, we used the newly advent Subaru telescope's Hyper Suprime-Cam to obtain deep optical images over the entire 5.4 deg$^2$ of the AKARI NEP wide field. With this deep and wide optical data, we, for the first time, can use the entire AKARI NEP wide data to construct restframe 8$\mu$m, 12$\mu$m, and total infrared (TIR) luminosity functions (LFs) at 0.15$<z<$2.2. A continuous 9-band filter coverage in the mid-IR wavelength (2.4, 3.2, 4.1, 7, 9, 11, 15, 18, and 24$\mu$m) by the AKARI satellite allowed us to estimate restframe 8$\mu$m and 12$\mu$m luminosities without using a large extrapolation based on a SED fit, which was the largest uncertainty in previous work. By combining these two results, we reveal dust-hidden cosmic star formation history and AGN evolution from z=0 to z=2.2, all probed by the AKARI satellite.
  • Nagisa Oi, Hideo Matsuhara, Tomotsugu Goto, Yousuke Utsumi, Rieko Momose, Ting-Chi Huang, Yoshiki Toba, Myungshin Im, Hyung Mok Lee, Seong Jin Kim, Takamitsu Miyaji, Mirko Krumpe, Kazumi Murata, Youichi Ohyama, Steve Serjeant, Chris Pearson, Takao Nakagawa, Takehiko Wada, Toshinobu Takagi, Shuji Matsuura, Ayano Shogaki, NEP team
    (17) 185-188, Dec 5, 2017  
    The AKARI North Ecliptic Pole (NEP) survey consists of two survey projects: NEP-Deep (0.5 sq.deg) and NEP-Wide (5.4 sq.deg), providing with tens of thousands of galaxies. A continuous filter coverage in the mid-infrared wavelengths (7, 9, 11, 15, 18 and 24 $\mu$m) is unique to diagnose the contributions from dusty star-formation activity and AGNs. Here we present current status focused on the newly obtained optical images and near-future prospects with a new X-ray telescope. Hyper Suprime-Cam on Subaru telescope is a gigantic optical camera with huge Field of View (FoV). Thanks to the wide FoV, we successfully obtained deep optical images at g, r, i, z and Y-bands covering most of the NEP-Wide field. Using the deep optical images, we identified over 5000 optical counterparts of the mid-IR sources, presumably deeply obscured galaxies in NEP-Wide field. We also investigated properties of these infrared sources with SED-fitting. eROSITA, to be launched early 2018, is a new all-sky X-ray survey telescope, and expected to conduct ultra deep 2-10 keV imaging toward NEP. We expect unprecedentedly numerous Compton-thick AGN candidates when combined with the multi-wavelength data in NEP region.
  • Shuhei Koyama, Yusei Koyama, Takuji Yamashita, Kana Morokuma-Matsui, Hideo Matsuhara, Takao Nakagawa, Masao Hayashi, Tadayuki Kodama, Rhythm Shimakawa, Tomoko L. Suzuki, Ken Ichi Tadaki, Ichi Tanaka, Moegi Yamamoto
    Astrophysical Journal, 847(2), Oct 1, 2017  
    We present the molecular gas mass fraction ( f ) and star formation efficiency (SFE) of local galaxies on the basisof our new CO(J = 1 - 0) observations with the Nobeyama 45 m radio telescope, combined with theCOLDGASS galaxy catalog, as a function of galaxy environment defined as the local number density of galaxiesmeasured with SDSS DR7 spectroscopic data. Our sample covers a wide range in the stellar mass and starformation rate (SFR), and also covers a wide environmental range over two orders of magnitude. This allows us toconduct the first systematic study of environmental dependence of molecular gas properties in galaxies from thelowest- to the highest-density environments in the local universe. We confirm that both f and SFE have strongpositive correlations with the SFR offset from the star-forming main sequence (δMS) and, most importantly, wefind that these correlations are universal across all environments. Our result demonstrates that star formationactivity within individual galaxies is primarily controlled by their molecular gas content, regardless of their globalenvironment. Therefore, we claim that one always needs to be careful about the δMS distribution of the samplewhen investigating the environmental effects on the H gas content in galaxies. H2 H2 2
  • Kazumi Murata, Takao Nakagawa, Hideo Matsuhara, Kenichi Yano
    Jul 6, 2017  
    We produce a catalogue of polycyclic aromatic hydrocarbon (PAH) 3.3 $\mu$m, Br$\alpha$ and infrared luminosity ($L$(IR)) of 412 local galaxies, and investigate a relation between these physical parameters. We measure the PAH 3.3 $\mu$m and Br$\alpha$ flux using AKARI 2-5 $\mu$m spectra and the $L$(IR) using the AKARI-all-sky-survey data. The $L$(IR) and redshift ranges of our sample are $L$(IR)=$10^{9.7-12.8}$L$_\odot$ and $z_{\rm spec}=0.002-0.3$, respectively. We found that the ratio of $L$(PAH 3.3 $\mu$m) to $L$(IR) is constant at $L$(IR) $<$ $10^{11} \rm L_\odot$ whereas it decreases with the $L$(IR) at higher $L$(IR). Also, the ratio of $L$(Br$\alpha$) to $L$(IR) decreases with the $L$(IR). The both $L$(PAH)/$L$(IR) and $L$(Br$\alpha$)/$L$(IR) ratios are not strongly dependent on galaxy type and dust temperature. The relative weakness of the two ratios could be attributed to destruction of PAH, a lack of UV photons exciting PAH molecules or ionising hydrogen gas, extremely high dust attenuation, or active galactic nucleus contribution to the $L$(IR). Although we cannot determine the cause of the decreases of the luminosity ratios, a clear correlation between them implies that they are related with each other. The catalogue presented in our work will be available at the AKARI archive web page.
  • F. A. Aharonian, H. Akamatsu, F. Akimoto, S. W. Allen, L. Angelini, K. A. Arnaud, M. Audard, H. Awaki, M. Axelsson, A. Bamba, M. W. Bautz, R. D. Blandford, E. Bulbul, L. W. Brenneman, G. V. Brown, E. M. Cackett, M. Chernyakova, M. P. Chiao, P. Coppi, E. Costantini, J. De Plaa, J. W.Den Herder, C. Done, T. Dotani, K. Ebisawa, M. E. Eckart, T. Enoto, Y. Ezoe, A. C. Fabian, C. Ferrigno, A. R. Foster, R. Fujimoto, Y. Fukazawa, A. Furuzawa, M. Galeazzi, L. C. Gallo, P. Gandhi, M. Giustini, A. Goldwurm, L. Gu, M. Guainazzi, Y. Haba, K. Hagino, K. Hamaguchi, I. Harrus, I. Hatsukade, K. Hayashi, T. Hayashi, K. Hayashida, J. Hiraga, A. E. Hornschemeier, A. Hoshino, J. P. Hughes, Y. Ichinohe, R. Iizuka, H. Inoue, S. Inoue, Y. Inoue, K. Ishibashi, M. Ishida, K. Ishikawa, Y. Ishisaki, M. Itoh, M. Iwai, N. Iyomoto, J. S. Kaastra, T. Kallman, T. Kamae, E. Kara, J. Kataoka, S. Katsuda, J. Katsuta, M. Kawaharada, N. Kawai, R. L. Kelley, D. Khangulyan, C. A. Kilbourne, A. L. King, T. Kitaguchi, S. Kitamoto, T. Kitayama, T. Kohmura, M. Kokubun, S. Koyama, K. Koyama, P. Kretschmar, H. A. Krimm, A. Kubota, H. Kunieda, P. Laurent, F. Lebrun, S. H. Lee, M. A. Leutenegger, O. Limousin, M. Loewenstein, K. S. Long, D. H. Lumb, G. M. Madejski, Y. Maeda, D. Maier
    Astrophysical Journal Letters, 837(1), Mar 1, 2017  
    High-resolution X-ray spectroscopy with Hitomi was expected to resolve the origin of the faint unidentified E ≈ 3.5 keV emission line reported in several low-resolution studies of various massive systems, such as galaxies and clusters, including the Perseus cluster. We have analyzed the Hitomi first-light observation of the Perseus cluster. The emission line expected for Perseus based on the XMM-Newton signal from the large cluster sample under the dark matter decay scenario is too faint to be detectable in the Hitomi data. However, the previously reported 3.5 keV flux from Perseus was anomalously high compared to the sample-based prediction. We find no unidentified line at the reported high flux level. Taking into account the XMM measurement uncertainties for this region, the inconsistency with Hitomi is at a 99% significance for a broad dark matter line and at 99.7% for a narrow line from the gas. We do not find anomalously high fluxes of the nearby faint K line or the Ar satellite line that were proposed as explanations for the earlier 3.5 keV detections. We do find a hint of a broad excess near the energies of high-n transitions of S xvi (E ≃ 3.44 keV rest-frame) - a possible signature of charge exchange in the molecular nebula and another proposed explanation for the unidentified line. While its energy is consistent with XMM pn detections, it is unlikely to explain the MOS signal. A confirmation of this interesting feature has to wait for a more sensitive observation with a future calorimeter experiment.
  • 中川 貴雄
    Publications of the Korean Astronomical Society, 32 175-177, 2017  Peer-reviewed
  • 中川 貴雄
    Publications of the Korean Astronomical Society, 32 331-335, 2017  Peer-reviewed
  • 大坪貴文, 土井靖生, 瀧田怜, 川田光伸, 北村良実, 中川貴雄, 松浦周二, 臼井文彦, 有松亘, 石原大助
    日本天文学会年会講演予稿集, 2017, 2017  
  • 深川美里, 石原大助, 金田英宏, 犬塚修一郎, 野村英子, 野津翔太, 本田充彦, 尾中敬, 左近樹, 中川貴雄, 芝井広
    日本天文学会年会講演予稿集, 2017, 2017  
  • 前嶋宏志, 前嶋宏志, 中川貴雄, 小島拓也, 小島拓也, 瀧田怜, 權静美
    日本天文学会年会講演予稿集, 2017, 2017  
  • 道井亮介, 道井亮介, 中川貴雄, 磯部直樹, 馬場俊介, 矢野健一
    日本天文学会年会講演予稿集, 2017, 2017  
  • 大薮進喜, 金田英宏, 磯部直樹, 河野孝太郎, 尾中敬, 和田武彦, 中川貴雄, 松原英雄, 山田亨, 長尾透, 今西昌俊, 芝井広
    日本天文学会年会講演予稿集, 2017, 2017  
  • 矢野健一, 矢野健一, 中川貴雄, MALKAN Matthew, 磯部直樹, 白旗麻衣, 馬場俊介, 道井亮介, BHALOTIA Vanshree
    日本天文学会年会講演予稿集, 2017, 2017  
  • 中川貴雄, 白旗麻衣, 臼田知史, 矢野健一, 馬場俊介, 道井亮介, 磯部直樹
    日本天文学会年会講演予稿集, 2017, 2017  
  • 小島拓也, 小島拓也, 中川貴雄, 前嶋宏志, 前嶋宏志
    日本天文学会年会講演予稿集, 2017, 2017  
  • 磯部直樹, 小山翔子, 紀基樹, 新沼浩太郎, 和田武彦, 中川貴雄, 松原英雄
    日本天文学会年会講演予稿集, 2017, 2017  
  • 芝井広, 小川博之, 中川貴雄, 松原英雄, 山田亨, 尾中敬, 河野孝太郎, 金田英宏
    日本天文学会年会講演予稿集, 2017, 2017  
  • 馬場俊介, 馬場俊介, 中川貴雄, 尾中敬, 臼井文彦, 山岸光義
    日本天文学会年会講演予稿集, 2017, 2017  
  • 村田一心, 松原英雄, 中川貴雄, 矢野健一
    日本天文学会年会講演予稿集, 2017, 2017  
  • 長尾透, 山田亨, 松原英雄, 中川貴雄, 和田武彦, 河野孝太郎, 尾中敬, 佐近樹, 金田英宏, 大薮進喜, 鈴木仁研, 江上英一, 芝井広, 今西昌俊
    日本天文学会年会講演予稿集, 2017, 2017  
  • 大坪貴文, 瀧田怜, 川田光伸, 北村良実, 中川貴雄, 土井靖生, 松浦周二, 臼井文彦, 有松亘, 石原大助
    日本天文学会年会講演予稿集, 2017, 2017  
  • 中川貴雄, 大西崇介, 馬場俊介, 道井亮介, 白旗麻衣, 磯部直樹, 臼田知史
    日本天文学会年会講演予稿集, 2017, 2017  
  • 馬場俊介, 馬場俊介, 中川貴雄, 磯部直樹, 白旗麻衣
    日本天文学会年会講演予稿集, 2017, 2017  

Research Projects

 49

● 専任大学名

 1
  • Affiliation (university)
    東京大学(University of Tokyo)