研究者業績

寺田 幸功

テラダ ユキカツ  (Yukikatsu Terada)

基本情報

所属
国立研究開発法人宇宙航空研究開発機構 宇宙科学研究所 特任准教授
学位
博士(東京大学)

J-GLOBAL ID
200901062224980497
researchmap会員ID
1000368169

外部リンク

経歴

 7

委員歴

 2

論文

 295
  • Makoto S. Tashiro, Shin Watanabe, Hironori Maejima, Kenichi Toda, Kyoko Matsushita, Hiroya Yamaguchi, Richard L. Kelley, Lillian S. Reichenthal, Leslie S. Hartz, Robert Petre, Brian J. Williams, Matteo Guainazzi, Andrea Santovincenzo, Elisa Costantini, Yoh Takei, Yoshitaka Ishisaki, Ryuichi Fujimoto, Joy Henegar-Leon, Gary Sneiderman, Hiroshi Tomida, Koji Mori, Hiroshi Nakajima, Yukikatsu Terada, Matt Holland, Micheal Loewenstein, Tomothey Kallman, Jelle Kaastra, Eric Miller, Makoto Sawada, Chris Done, Teruaki Enoto, Aya Bamba, Paul Plucinsky, Yoshitaka Ueda, Erin Kara, Irina Zhuravleva, Yutaka Fujita, Jose Antonio Quero, Yoshitaka Arai, Marc Audard, Hisamitsu Awaki, Chris Baluta, Nobutaka Bando, Ehud Behar, Thomas Bialas, Rozenn Boissay-Malaquin, Laura Brenneman, Gregory V. Brown, Meng Chiao, Lia Corrales, Renata Cumbee, Cor de Vries, Jan-Willem den Herder, Maria Diaz-Trigo, Michael DiPirro, Tadayasu Dotani, Jacobo Ebrero Carrero, Ken Ebisawa, Megan Eckart, Dominique Eckart, Satoshi Eguchi, Yuichiro Ezoe, Carlo Ferrgno, Adam Foster, Yasushi Fukazawa, Kotaro Fukushima, Akihiro Furuzawa, Luigi Gallo, Nathalie Gorter, Martin Grim, Liyi Gu, Koichi Hagino, Kenji Hamaguchi, Isamu Hatsukade, Katsuhiro Hayashi, Takayuki Hayashi, Natalie Hell, Edmund Hodges-Kluck, Takafumi Horiuchi, Ann Hornschemeier, Akio Hoshino, Yuto Ichinohe, Chisato Ikuta, Ryo Iizuka, Daiki Ishi, Manabu Ishida, Naoki Ishihama, Kumi Ishikawa, Kosei Ishimura, Tess Jaffe, Satoru Katsuda, Yoshiaki Kanemaru, Steven Kenyon, Caroline Kilbourne, Mark Kimball, Shunji Kitamoto, Shogo Kobayashi, Akihide Kobayashi, Takayoshi Kohmura, Aya Kubota, Maurice Leutenegger, Muzi Li, Yoshitomo Maeda, Maxim Markevitch, Hironori Matsumoto, Keiichi Matsuzaki, Dan McCammon, Brian McLaughlin, Brian McNamara, Josegh Miko, Jon Miller, Kenji Minesugi, Shinji Mitani, Ikuyuki Mitsuishi, Misaki Mizumoto, Tsunefumi Mizuno, Koji Mukai, Hiroshi Murakami, Richard Mushotzky, Kazuhiro Nakazawa, Chikara Natsukari, Jan-Uwe Ness, Kenichiro Nigo, Mari Nishiyama, Kumiko Nobukawa, Masayoshi Nobukawa, Hirofumi Noda, Hirokazu Odaka, Mina Ogawa, Shoji Ogawa, Takashi Okajima, Atsushi Okamoto, Naomi Ota, Masanobu Ozaki, Stephane Paltani, F. Scott Porter, Katja Pottschmidt, Takahiro Sasaki, Kosuke Sato, Rie Sato, Toshiki Sato, Yoichi Sato, Hiromi Seta, Maki Shida, Megumi Shidatsu, Shuhei Shigeto, Russel Shipman, Keisuke Shinozaki, Peter Shirron, Aurora Simionescu, Randall Smith, Young Soong, Hiromasa Suzuki, Andy Szymkowiak, Hiromitsu Takahashi, Mai Takeo, Toru Tamagawa, Keisuke Tamura, Takaaki Tanaka, Atsushi Tanimoto, Yoichi Terashima, Yohko Tsuboi, Masahiro Tsujimoto, Hiroshi Tsunemi, Takeshi Tsuru, Hiroyuki Uchida, Nagomi Ucghida, Yuusuke Uchida, Hideki Uchiyama, Shinichiro Uno, Erik Van der Meer, Jacco Vink, Michael Wittheof, Rob Wolf, Satoshi Yamada, Shinya Yamada, Kazutaka Yamaoka, Noriko Yamasaki, Makoto Yamauchi, Shigeo Yamauchi, Keiichi Yamagase, Tahir Yaqoob, Susumu Yasuda, Tomokage Yoneyama, Tessei Yoshida
    Space Telescopes and Instrumentation 2024: Ultraviolet to Gamma Ray 52-52 2024年8月21日  
  • Yohko Tsuboi, Koichiro Akasu, Noboru Nemoto, Tomokage Yoneyama, Marina Yoshimoto, Kotaro Fukushima, Katsuhiro Hayashi, Yoshiaki Kanemaru, Shoji Ogawa, Tessei Yoshida, Marc Audard, Ehud Behar, Shun Inoue, Yuiko Ishihara, Takayoshi Komura, Yoshitomo Maeda, Misaki Mizumoto, Masayoshi Nobukawa, Katja Pottschmidt, Megumi Shidatsu, Yukikatsu Terada, Yuichi Terashima, Hiroyuki Uchida
    Space Telescopes and Instrumentation 2024: Ultraviolet to Gamma Ray 236-236 2024年8月21日  
  • Yoshiaki Kanemaru, Ryo Iizuka, Yoshitomo Maeda, Takashi Okajima, Takayuki Hayashi, Kazuhiro Kiyokane, Yuto Nihei, Takashi Kominato, Manabu Ishida, Chikara Natsukari, Shin Watanabe, Kosuke Sato, Yukikatsu Terada, Katsuhiro Hayashi, Chris Baluta, Tessei Yoshida, Akio Hoshino, Shoji Ogawa, Kotaro Fukushima, Hiromitsu Takahashi, Masayoshi Nobukawa, Tsunefumi Mizuno, Kazuhiro Nakazawa, Shin'ichiro Uno, Ken Ebisawa, Satoshi Eguchi, Satoru Katsuda, Aya Kubota, Naomi Ota, Megumi Shidatsu, Atsushi Tanimoto, Yuichi Terashima, Yohko Tsuboi, Yuusuke Uchida, Hideki Uchiyama, Shigeo Yamauchi, Yoneyama Tomokage, Satoshi Yamada, Nagomi Uchida, Rie Sato, Matt Holland, Michael Loewenstein, Eric D. Miller, Tahir Yaqoob, Robert S. Hill, Trisha F. Doyle, Efrain Perez-Solis, Morgan D. Waddy, Mark Mekosh, Joseph B. Fox, Makoto S. Tashiro, Kenichi Toda, Hironori Maejima
    Space Telescopes and Instrumentation 2024: Ultraviolet to Gamma Ray 224-224 2024年8月21日  
  • Megumi Shidatsu, Yukikatsu Terada, Takashi Kominato, So Kato, Ryohei Sato, Minami Sakama, Takumi Shioiri, Yugo Motogami, Yuki Niida, Toshihiro Takagi, Chikara Natsukari, Makoto S. Tashiro, Kenichi Toda, Hironori Maejima, Shin Watanabe, Ryo Iizuka, Rie Sato, Chris Baluta, Katsuhiro Hayashi, Tessei Yoshida, Shoji Ogawa, Yoshiaki Kanemaru, Kotaro Fukushima, Akio Hoshino, Hiromitsu Takahashi, Masayoshi Nobukawa, Tsunefumi Mizuno, Kazuhiro Nakazawa, Shin'ichiro Uno, Ken Ebisawa, Satoshi Eguchi, Satoru Katsuda, Aya Kubota, Naomi Ota, Atsushi Tanimoto, Yuichi Terashima, Yohko Tsuboi, Yuusuke Uchida, Hideki Uchiyama, Shigeo Yamauchi, Tomokage Yoneyama, Satoshi Yamada, Nagomi Uchida, Matt Holland, Michael Loewenstein, Eric D. Miller, Tahir Yaqoob, Robert S. Hill, Trisha F. Doyle, Efrain Perez-Solis, Morgan D. Waddy, Mark Mekosh, Joseph B. Fox
    Space Telescopes and Instrumentation 2024: Ultraviolet to Gamma Ray 235-235 2024年8月21日  
  • Yukikatsu Terada, Megumi Shidatsu, Makoto Sawada, Takashi Kominato, So Kato, Ryohei Sato, Minami Sakama, Takumi Shioiri, Yuki Niida, Chikara Natsukari, Makoto S. Tashiro, Kenichi Toda, Hironori Maejima, Katsuhiro Hayashi, Tessei Yoshida, Shoji Ogawa, Yoshiaki Kanemaru, Akio Hoshino, Kotaro Fukushima, Hiromitsu Takahashi, Masayoshi Nobukawa, Tsunefumi Mizuno, Kazuhiro Nakazawa, Shin'ichiro Uno, Ken Ebisawa, Satoshi Eguchi, Satoru Katsuda, Aya Kubota, Naomi Ota, Atsushi Tanimoto, Yuichi Terashima, Yohko Tsuboi, Yuusuke Uchida, Hideki Uchiyama, Shigeo Yamauchi, Tomokage Yoneyama, Satoshi Yamada, Nagomi Uchida, Shin Watanabe, Ryo Iizuka, Rie Sato, Chris Baluta, Matt Holland, Michael Loewenstein, Eric D. Miller, Tahir Yaqoob, Robert S. Hill, Trisha F. Doyle, Efrain Perez-Solis, Morgan D. Waddy, Mark Mekosh, Joseph B. Fox, Toshihiro Takagi, Yugo Motogami, Katja Pottschmidt, Teruaki Enoto, Takaaki Tanaka
    Space Telescopes and Instrumentation 2024: Ultraviolet to Gamma Ray 61-61 2024年8月21日  
  • Katsuhiro Hayashi, Makoto S. Tashiro, Yukikatsu Terada, Tessei Yoshida, Shoji Ogawa, Yoshiaki Kanemaru, Kotaro Fukushima, Akio Hoshino, Hiromitsu Takahashi, Masayoshi Nobukawa, Tsunefumi Mizuno, Kazuhiro Nakazawa, Shin'ichiro Uno, Ken Ebisawa, Satoshi Eguchi, Satoru Katsuda, Takao Kitaguchi, Aya Kubota, Naomi Ota, Megumi Shidatsu, Atsushi Tanimoto, Yuichi Terashima, Yohko Tsuboi, Yuusuke Uchida, Hideki Uchiyama, Shigeo Yamauchi, Tomokage Yoneyama, Satoshi Yamada, Nagomi Uchida, Seiko Sakurai, Shin Watanabe, Ryo Iizuka, Rie Sato, Chris Baluta, Takayuki Tamura, Yasushi Fukazawa, Hirokazu Odaka, Tsubasa Tamba, Ryohei Sato, Sou Kato, Minami Sakama, Takumi Shioiri, Yuki Niida, Natsuki Sakamoto, Noboru Nemoto, Yuki Omiya, Nari Suzuki, Toshihiro Takagi, Yugo Motogami, Matt Holland, Michael Loewenstein, Eric D. Miller, Tahir Yaqoob, Robert S. Hill, Trisha F. Doyle, Efrain Perez-Solis, Morgan D. Waddy, Mark Mekosh, Joseph B. Fox, Matteo Guainazzi, Jan-Uwe Ness, Hironori Maejima, Kenichi Toda, Chikara Natsukari
    Space Telescopes and Instrumentation 2024: Ultraviolet to Gamma Ray 60-60 2024年8月21日  
  • Kazuhiro Nakazawa, Teruaki Enoto, Wataru B. Iwakiri, Megumi Shidatsu, Hiromitsu Takahashi, Takashi Okajima, Manabu Ishida, Hiromasa Suzuku, Hiroya Yamaguchi, Shin Watanabe, Mariko Kimura, Hiroshi Nakajima, Takaaki Tanaka, Hiroyuki Uchida, Yoshihiro Ueda, Takeshi G. Tsuru, Kosuke Namekata, Koji Mori, Masayoshi Nobukawa, Hironori Matsumoto, Hiroki Akamatsu, Taiki Kawamuro, Satoshi Yamada, Yukikatsu Terada, Yoichi Yatsu, Hirofumi Noda
    Space Telescopes and Instrumentation 2024: Ultraviolet to Gamma Ray 92-92 2024年8月21日  
  • Vincenzo Sapienza, Marco Miceli, Aya Bamba, Salvatore Orlando, Shiu-Hang Lee, Shigehiro Nagataki, Masaomi Ono, Satoru Katsuda, Koji Mori, Makoto Sawada, Yukikatsu Terada, Roberta Giuffrida, Fabrizio Bocchino
    The Astrophysical Journal Letters 2024年1月1日  
  • Shunsaku Nagasawa, Takahiro Minami, Shin Watanabe, Tadayuki Takahashi
    Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 1050 168175-168175 2023年5月  
  • Satoru Katsuda, Teruaki Enoto, Andrea N. Lommen, Koji Mori, Yuko Motizuki, Motoki Nakajima, Nathaniel C. Ruhl, Kosuke Sato, Gunter Stober, Makoto S. Tashiro, Yukikatsu Terada, Kent S. Wood
    Journal of Geophysical Research: Space Physics 128(2) 2023年2月21日  
  • I-Huan Chiu, Shin’ichiro Takeda, Meito Kajino, Atsushi Shinohara, Miho Katsuragawa, Shunsaku Nagasawa, Ryota Tomaru, Goro Yabu, Tadayuki Takahashi, Shin Watanabe, Soshi Takeshita, Yasuhiro Miyake, Kazuhiko Ninomiya
    Scientific Reports 12(1) 2022年12月  
    Abstract Elemental analysis based on muonic X-rays resulting from muon irradiation provides information about bulk material composition without causing damage, which is essential in the case of precious or otherwise unreachable samples, such as in archeology and planetary science. We developed a three-dimensional (3D) elemental analysis technique by combining the elemental analysis method based on negative muons with an imaging cadmium telluride double-sided strip detector (CdTe-DSD) designed for the hard X-ray and soft $$\gamma$$-ray observation. A muon irradiation experiment using spherical plastic samples was conducted at the Japan Proton Accelerator Research Complex (J-PARC); a set of projection images was taken by the CdTe-DSD, equipped with a pinhole collimator, for different sample rotation angles. The projection images measured by the CdTe-DSD were utilized to obtain a 3D volumetric phantom by using the maximum likelihood expectation maximization algorithm. The reconstructed phantom successfully revealed the 3D distribution of carbon in the bulk samples and the stopping depth of the muons. This result demonstrated the feasibility of the proposed non-destructive 3D elemental analysis method for bulk material analysis based on muonic X-rays.
  • Jiro Shimoda, Yutaka Ohira, Aya Bamba, Yukikatsu Terada, Ryo Yamazaki, Tsuyoshi Inoue, Shuta J. Tanaka
    PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF JAPAN 74(5) 1022-1040 2022年10月  
    A novel collisionless shock jump condition is suggested by modeling the entropy production at the shock transition region. We also calculate downstream developments of the atomic ionization balance and the ion temperature relaxation in supernova remnants (SNRs). The injection process and subsequent acceleration of cosmic rays (CRs) in the SNR shocks are closely related to the formation process of the collisionless shocks. The formation of the shock is caused by wave-particle interactions. Since the wave-particle interactions result in energy exchanges between electromagnetic fields and charged particles, the randomization of particles associated with the shock transition may occur at a rate given by the scalar product of the electric field and current. We find that order-of-magnitude estimates of the randomization with reasonable strength of the electromagnetic fields in the SNR constrain the amount of CR nuclei and the ion temperatures. The constrained amount of CR nuclei can be sufficient to explain the Galactic CRs. The ion temperature becomes significantly lower than that in the case without CRs. To distinguish the case without CRs, we perform synthetic observations of atomic line emissions from the downstream region of the SNR RCW 86. Future observations by XRISM and Athena can distinguish whether the SNR shock accelerates the CRs or not from the ion temperatures.
  • Juan Camilo Buitrago-Casas, Lindsay Glesener, Steven Christe, Sam Krucker, Juliana Vievering, P. S. Athiray, Sophie Musset, Lance Davis, Sasha Courtade, Gregory Dalton, Paul Turin, Zoe Turin, Brian Ramsey, Stephen Bongiorno, Daniel Ryan, Tadayuki Takahashi, Kento Furukawa, Shin Watanabe, Noriyuki Narukage, Shin-nosuke Ishikawa, Ikuyuki Mitsuishi, Kouichi Hagino, Van Shourt, Jessie Duncan, Yixian Zhang, Stuart D. Bale
    ASTRONOMY & ASTROPHYSICS 665 2022年9月  査読有り
    Context. Solar nanoflares are small impulsive events releasing magnetic energy in the corona. If nanoflares follow the same physics as their larger counterparts, they should emit hard X-rays (HXRs) but with a rather faint intensity. A copious and continuous presence of nanoflares would result in a sustained HXR emission. These nanoflares could deliver enormous amounts of energy into the solar corona, possibly accounting for its high temperatures. To date, there has not been any direct observation of such persistent HXRs from the quiescent Sun. However, the quiet-Sun HXR emission was constrained in 2010 using almost 12 days of quiescent solar off-pointing observations by the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI). These observations set 2 sigma upper limits at 3.4 x 10(-2) photons s(-1) cm(-2) keV(-1) and 9.5 x 10(-4) photons s(-1) cm(-2) keV(-1) for the 3-6 keV and 6-12 keV energy ranges, respectively. Aims. Observing faint HXR emission is challenging because it demands high sensitivity and dynamic range instruments. The Focusing Optics X-ray Solar Imager (FOXSI) sounding rocket experiment excels in these two attributes when compared with RHESSI. FOXSI completed its second and third successful flights (FOXSI-2 and -3) on December 11, 2014, and September 7, 2018, respectively. This paper aims to constrain the quiet-Sun emission in the 5-10 keV energy range using FOXSI-2 and -3 observations. Methods. To fully characterize the sensitivity of FOXSI, we assessed ghost ray backgrounds generated by sources outside of the field of view via a ray-tracing algorithm. We used a Bayesian approach to provide upper thresholds of quiet-Sun HXR emission and probability distributions for the expected flux when a quiet-Sun HXR source is assumed to exist. Results. We found a FOXSI-2 upper limit of 4.5 x 10(-2) photons s(-1) cm(-2) keV(-1) with a 2 sigma confidence level in the 5-10 keV energy range. This limit is the first-ever quiet-Sun upper threshold in HXR reported using similar to 1 min observations during a period of high solar activity. RHESSI was unable to measure the quiet-Sun emission during active times due to its limited dynamic range. During the FOXSI-3 flight, the Sun exhibited a fairly quiet configuration, displaying only one aged nonflaring active region. Using the entire similar to 6.5 min of FOXSI-3 data, we report a 2 sigma upper limit of similar to 10(-4) photons s(-1) cm(-2) keV(-1) for the 5-10 keV energy range. Conclusions. The FOXSI-3 upper limits on quiet-Sun emission are similar to that previously reported, but FOXSI-3 achieved these results with only 5 min of observations or about 1/2600 less time than RHESSI. A possible future spacecraft using hard X-ray focusing optics like those in the FOXSI concept would allow enough observation time to constrain the current HXR quiet-Sun limits further, or perhaps even make direct detections. This is the first report of quiet-Sun HXR limits from FOXSI and the first science paper using FOXSI-3 observations.
  • Koji Mori, Takeshi G. Tsuru, Kazuhiro Nakazawa, Yoshihiro Ueda, Shin Watanabe, Takaaki Tanaka, Manabu Ishida, Hironori Matsumoto, Hisamitsu Awaki, Hiroshi Murakami, Masayoshi Nobukawa, Ayaki Takeda, Yasushi Fukazawa, Hiroshi Tsunemi, Tadayuki Takahashi, Ann E. Hornschemeier, Takashi Okajima, William W. Zhang, Brian J. Williams, Tonia Venters, Kristin Madsen, Mihoko Yukita, Hiroki Akamatsu, Aya Bamba, Teruaki Enoto, Yutaka Fujita, Akihiro Furuzawa, Kouichi Hagino, Kosei Ishimura, Masayuki Itoh, Tetsu Kitayama, Shogo B. Kobayashi, Takayoshi Kohmura, Aya Kubota, Misaki Mizumoto, Tsunefumi Mizuno, Hiroshi Nakajima, Kumiko K. Nobukawa, Hirofumi Noda, Hirokazu Odaka, Naomi Ota, Toshiki Sato, Megumi Shidatsu, Hiromasa Suzuki, Hiromitsu Takahashi, Atsushi Tanimoto, Yukikatsu Terada, Yuichi Terashima, Hiroyuki Uchida, Yasunobu Uchiyama, Hiroya Yamaguchi, Yoichi Yatsu
    Space Telescopes and Instrumentation 2022: Ultraviolet to Gamma Ray 2022年8月31日  
  • Satoshi Eguchi, Makoto Tashiro, Yukikatsu Terada, Hiromitsu Takahashi, Masayoshi Nobukawa, Tsunefumi Mizuno, Shin'ichiro Uno, Aya Kubota, Kazuhiro Nakazawa, Shin Watanabe, Ryo Iizuka, Rie Sato, Tomokage Yoneyama, Chris Baluta, Ken Ebisawa, Yasushi Fukazawa, Katsuhiro Hayashi, So Kato, Satoru Katsuda, Takao Kitaguchi, Hirokazu Odaka, Masanori Ohno, Naomi Ota, Minami Sakama, Ryohei Sato, Megumi Shidatsu, Yasuharu Sugawara, Tsubasa Tamba, Atsushi Tanimoto, Yuichi Terashima, Yohko Tsuboi, Nagomi Uchida, Yuusuke Uchida, Hideki Uchiyama, Shigeo Yamauchi, Masaaki Sakano, Tessei Yoshida, Satoshi Yamada
    Space Telescopes and Instrumentation 2022: Ultraviolet to Gamma Ray 2022年8月31日  
  • Hirofumi Fujii, Kazunobu Ohnuki, Shin’ichiro Takeda, Miho Katsuragawa, Atsushi Yagishita, Goro Yabu, Shin Watanabe, Tadayuki Takahashi
    RADIOISOTOPES 71(2) 141-151 2022年7月15日  
  • Shunsaku Nagasawa, Tomoko Kawate, Noriyuki Narukage, Tadayuki Takahashi, Amir Caspi, Thomas N. Woods
    Astrophysical Journal 933(2) 2022年7月1日  
    We conduct a wide-band X-ray spectral analysis in the energy range of 1.5-100 keV to study the time evolution of the M7.6-class flare of 2016 July 23, with the Miniature X-ray Solar Spectrometer (MinXSS) CubeSat and the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) spacecraft. With the combination of MinXSS for soft X-rays and RHESSI for hard X-rays, a nonthermal component and three-temperature multithermal component - "cool"(T ≈ 3 MK), "hot"(T ≈ 15 MK), and "superhot"(T ≈ 30 MK) - were measured simultaneously. In addition, we successfully obtained the spectral evolution of the multithermal and nonthermal components with a 10 s cadence, which corresponds to the Alfvén timescale in the solar corona. We find that the emission measures of the cool and hot thermal components are drastically increasing more than hundreds of times and the superhot thermal component is gradually appearing after the peak of the nonthermal emission. We also study the microwave spectra obtained by the Nobeyama Radio Polarimeters, and we find that there is continuous gyrosynchrotron emission from mildly relativistic nonthermal electrons. In addition, we conducted a differential emission measure (DEM) analysis by using Atmospheric Imaging Assembly on board the Solar Dynamics Observatory and determined that the DEM of cool plasma increases within the flaring loop. We find that the cool and hot plasma components are associated with chromospheric evaporation. The superhot plasma component could be explained by the thermalization of the nonthermal electrons trapped in the flaring loop.
  • Yukikatsu Terada, Yuya Miwa, Hayato Ohsumi, Shin-ichiro Fujimoto, Satoru Katsuda, Aya Bamba, Ryo Yamazaki
    The Astrophysical Journal 933(1) 111-111 2022年7月1日  
    Abstract We perform a full nuclear-network numerical calculation of the r-process nuclei in binary neutron-star mergers (NSMs), with the aim of estimating gamma-ray emissions from the remnants of Galactic NSMs up to 106 yr old. The nucleosynthesis calculation of 4070 nuclei is adopted to provide the elemental composition ratios of nuclei with an electron fraction Ye between 0.10 and 0.45. The decay processes of 3237 unstable nuclei are simulated to extract the gamma-ray spectra. As a result, the NSMs have different spectral colors in the gamma-ray band from various other astronomical objects at less than 105 yr old. In addition, we propose a new line diagnostic method for Ye that uses the line ratios of either 137mBa/85K or 243Am/60mCo, which become larger than unity for young and old r-process sites, respectively, with a low-Ye environment. From an estimation of the distance limit for gamma-ray observations as a function of age, the high sensitivity in the sub-megaelectronvolt band, at approximately 10−9 photons s−1 cm−2 or 10−15 erg s−1 cm−2, is required to cover all the NSM remnants in our Galaxy, if we assume that the population of NSMs by Wu et al. A gamma-ray survey with sensitivities of 10−8–10−7 photons s−1 cm−2 or 10−14–10−13 erg s−1 cm−2 in the 70–4000 keV band is expected to find emissions from at least one NSM remnant under the assumption of an NSM rate of 30 Myr−1. The feasibility of gamma-ray missions observing Galactic NSMs is also studied.
  • Sunada, Yuji, Morimoto, Arisa, Tashiro, Makoto S, Terada, Yukikatsu, Katsuda, Satoru, Sato, Kosuke, Tateishi, Dai, Sasaki, Nobuaki
    Publications of the Astronomical Society of Japan 2022年5月  査読有り
  • Tsubasa Tamba, Hirokazu Odaka, Aya Bamba, Hiroshi Murakami, Koji Mori, Kiyoshi Hayashida, Yukikatsu Terada, Tsunefumi Mizuno, Masayoshi Nobukawa
    Publications of the Astronomical Society of Japan 74(2) 364-383 2022年4月4日  
    Abstract We have developed a simulation-based method of spectral analysis for pile-up-affected data of X-ray CCDs without any loss of photon statistics. As effects of the photon pile-up appear as complicated nonlinear detector responses, we employ a detailed simulation to calculate the important processes in an X-ray observation including physical interactions, detector signal generation, detector readout, and a series of data reduction processes. This simulation naturally reproduces X-ray-like and background-like events as results of X-ray photon merging in a single pixel or in a chunk of adjacent pixels, allowing us to construct a nonlinear spectral analysis framework that can treat pile-up-affected observation data. For validation, we have performed data analysis of Suzaku X-ray Imaging Spectrometer (XIS) observations using this framework with various parameters of the detector simulation, all of which are optimized for that instrument. We present three cases of different pile-up degrees: PKS 2155−304 (negligible pile-up), Aquila X-1 (moderate pile-up), and the Crab Nebula (strong pile-up); we show that the nonlinear analysis method produces results consistent with a conventional linear analysis for the negligible pile-up condition, and accurately corrects well-known pile-up effects such as spectral hardening and flux decrease for the pile-up cases. These corrected results are consistent with those obtained by a widely used core-exclusion method or by other observatories with much higher timing resolutions (without pile-up). Our framework is applicable to any types of CCDs used for X-ray astronomy, including future missions such as X-ray Imaging and Spectroscopy Mission (XRISM), by appropriate optimization of the simulation parameters.
  • Tateishi, Dai, Katsuda, Satoru, Terada, Yukikatsu, Acero, Fabio, Yoshida, Takashi, Fujimoto, Shin-ichiro, Sano, Hidetoshi
    2021年10月  
    We report on a discovery of an X-ray emitting circumstellar material knot inside the synchrotron dominant supernova remnant (SNR) RX J1713.7-3946. This knot was previously thought to be a Wolf-Rayet star (WR 85), but we realized that it is in fact $\sim$40$^{\prime\prime}$ away from WR 85, indicating no relation to WR 85. We performed high-resolution X-ray spectroscopy with the Reflection Grating Spectrometer (RGS) on board XMM-Newton. The RGS spectrum clearly resolves a number of emission lines, such as N Ly$\alpha$, O Ly$\alpha$, Fe XVIII, Ne X, Mg XI, and Si XIII. The spectrum can be well represented by an absorbed thermal emission model with a temperature of $k_{\rm B}T_{\rm e} = 0.65\pm 0.02$ keV. The elemental abundances are obtained to be ${\rm N/H} = 3.5\pm 0.8{\rm \left(N/H\right)_{\odot } }$, ${\rm O/H} = 0.5\pm0.1{\rm \left(O/H\right)_{\odot } }$, ${\rm Ne/H} = 0.9\pm0.1{\rm \left(Ne/H\right)_{\odot } }$, ${\rm Mg/H} = 1.0\pm0.1{\rm \left(Mg/H\right)_{\odot } }$, ${\rm Si/H} = 1.0\pm0.2{\rm \left(Si/H\right)_{\odot } }$, and ${\rm Fe/H} = 1.3\pm0.1{\rm \left(Fe/H\right)_{\odot } }$. The enhanced N abundance with others being about the solar values allows us to infer that this knot is circumstellar material ejected when the progenitor star evolved into a red supergiant. The abundance ratio of N to O is obtained to be $\rm N/O = 6.8_{-2.1}^{+2.5}\left(N/O\right)_{\odot}$. By comparing this to those in outer layers of red supergiant stars expected from stellar evolution simulations, we estimate the initial mass of the progenitor star to be $15\, \rm M_{\odot} \lesssim \rm M \lesssim 20\, \rm M_{\odot}$....
  • Hiroki Yoneda, Dmitry Khangulyan, Teruaki Enoto, Kazuo Makishima, Kairi Mine, Tsunefumi Mizuno, Tadayuki Takahashi
    Astrophysical Journal 917(2) 2021年8月20日  
    We report a detailed analysis of the hard X-ray and GeV gamma-ray spectra of LS 5039, one of the brightest gamma-ray binary system in the Galaxy. The Nuclear Spectroscopic Telescope Array (NuSTAR) observation covering its entire orbit in 2016 allowed us for the first time to study the orbital variability of the spectrum above 10 keV. The hard X-ray spectrum is well described with a single power-law component up to 78 keV. The X-ray flux showed a slight deviation from those observed previously with Suzaku in 2007. The fast X-ray brightening observed with Suzaku, around the inferior conjunction, was not observed in this observation. We also analyzed 11 yr of Fermi Large Area Telescope data of LS 5039. The GeV spectrum around the inferior conjunction was well described with two nonthermal components: a power law with a photon index of ∼3 and a cutoff power law with a cutoff energy of ∼2 GeV. The orbital flux variability also changed gradually around a few GeV. These results indicate that there are two emission components in the GeV band, and the dominant component above ∼1 GeV does not depend on the orbital phase. By combining these results, we update the spectral energy distribution of LS 5039 with the highest available statistics. Theoretical models proposed so far cannot explain the obtained multiwavelength spectrum, especially the emission from ∼1 to ∼400 MeV, and we discuss the possibility that particle acceleration in LS 5039 is different from the shock acceleration.
  • Yukikatsu Terada, Matt Holland, Michael Loewenstein, Makoto Tashiro, Hiromitsu Takahashi, Masayoshi Nobukawa, Tsunefumi Mizuno, Takayuki Tamura, Shin’ichiro Uno, Shin Watanabe, Chris Baluta, Laura Burns, Ken Ebisawa, Satoshi Eguchi, Yasushi Fukazawa, Katsuhiro Hayashi, Ryo Iizuka, Satoru Katsuda, Takao Kitaguchi, Aya Kubota, Eric Miller, Koji Mukai, Shinya Nakashima, Kazuhiro Nakazawa, Hirokazu Odaka, Masanori Ohno, Naomi Ota, Rie Sato, Makoto Sawada, Yasuharu Sugawara, Megumi Shidatsu, Tsubasa Tamba, Atsushi Tanimoto, Yuichi Terashima, Yohko Tsuboi, Yuusuke Uchida, Hideki Uchiyama, Shigeo Yamauchi, Tahir Yaqoob
    Journal of Astronomical Telescopes, Instruments, and Systems 7(03) 2021年7月1日  
  • Yutaka Tsuzuki, Shin Watanabe, Shimpei Oishi, Nobuyuki Nakamura, Naoki Numadate, Hirokazu Odaka, Yuusuke Uchida, Hiroki Yoneda, Tadayuki Takahashi
    Review of Scientific Instruments 92(6) 2021年6月1日  査読有り
    Methods to measure the polarization of x rays from highly charged heavy ions with a significantly higher accuracy than that of the existing technology are needed to explore relativistic and quantum electrodynamics effects, including the Breit interaction. We developed an Electron Beam Ion Trap Compton Camera (EBIT-CC), a new Compton polarimeter with pixelated multi-layer silicon, and cadmium telluride counters. The EBIT-CC detects the three-dimensional position of Compton scattering and photoelectric absorption, and thus, the degree of polarization of incoming x rays can be evaluated. We attached the EBIT-CC on the Tokyo Electron Beam Ion Trap (Tokyo-EBIT) in the University of Electro-Communications. An experiment was performed to evaluate its polarimetric capability through an observation of radiative recombination x rays emitted from highly charged krypton ions, which were generated by the Tokyo-EBIT. The CC of the EBIT-CC was calibrated for the ∼75 keV x rays. We developed event reconstruction and selection procedures and applied them to every registered event. As a result, we successfully obtained the polarization degree with an absolute uncertainty of 0.02. This uncertainty is small enough to probe the difference between the zero-frequency approximation and full-frequency-dependent calculation for the Breit interaction, which is expected for dielectronic recombination x rays of highly charged heavy ions.
  • Tsutomu Nagayoshi, Aya Bamba, Satoru Katsuda, Yukikatsu Terada
    Publications of the Astronomical Society of Japan 2021年4月5日  
  • Satoru Katsuda, Hitoshi Fujiwara, Yoshitaka Ishisaki, Maeda Yoshitomo, Koji Mori, Yuko Motizuki, Kosuke Sato, Makoto S. Tashiro, Yukikatsu Terada
    Journal of Geophysical Research: Space Physics 126(4) 2021年4月  
  • Seiya Nozaki, Kyosuke Awai, Aya Bamba, Juan Abel Barrio, Maria Isabel Bernardos, Oscar Blanch, Joan Boix, Franca Cassol, Yuuki Choushi, Carlos Delgado, Carlos Diaz, Nadia Fouque, Lluis Freixas, Pawel Gliwny, Shuichi Gunji, Daniela Hadasch, Dirk Hoffmann, Julien Houles, Yusuke Inome, Yuki Iwamura, Lea Jouvin, Hideaki Katagiri, Kiomei Kawamura, Daniel Kerszberg, Yusuke Konno, Hidetoshi Kubo, Junko Kushida, Yukiho Kobayashi, Ruben Lopez, Gustavo Martinez, Shu Masuda, Daniel Mazin, Abelardo Moralejo, Elena Moretti, Tsutomu Nagayoshi, Takeshi Nakamori, Kyoshi Nishijima, Yuto Nogami, Leyre Nogués, Hideyuki Ohoka, Tomohiko Oka, Nao Okazaki, Akira Okumura, Reiko Orito, Jean-Luc Panazol, Riccardo Paoletti, Cristobal Pio, Miguel Polo, Julie Prast, Takayuki Saito, Shunsuke Sakurai, Julian Sitarek, Yuji Sunada, Megumi Suzuki, Mitsunari Takahashi, Kenji Tamura, Manobu Tanaka, Luis Angel Tejedor, Yukikatsu Terada, Masahiro Teshima, Yusuke Tsukamoto, Tokonatsu Yamamoto
    Ground-based and Airborne Instrumentation for Astronomy VIII 114470H 2020年12月13日  
  • Eric D. Miller, Makoto Sawada, Matteo Guainazzi, Aurora Simionescu, Maxim Markevitch, Liyi Gu, Megan E. Eckart, Caroline A. Kilbourne, Maurice A. Leutenegger, Frederick S. Porter, Masahiro Tsujimoto, Cor P. de Vries, Takashi Okajima, Takayuki Hayashi, Rozenn Boissay-Malaquin, Keisuke Tamura, Hironori Matsumoto, Koji Mori, Hiroshi Nakajima, Takaaki Tanaka, Yukikatsu Terada, Michael Loewenstein, Tahir Yaqoob, Marc Audard, Ehud Behar, Laura Brenneman, Lia Corrales, Renata S. Cumbee, Teruaki Enoto, Edmund Hodges-Kluck, Yoshitomo Maeda, Paul P. Plucinsky, Katja Pottschmidt, Makoto S. Tashiro, Richard L. Kelley, Robert Petre, Brian J. Williams, Hiroya Yamaguchi
    Space Telescopes and Instrumentation 2020: Ultraviolet to Gamma Ray 2020年12月13日  
  • Makoto S. Tashiro, Hironori Maejima, Kenichi Toda, Richard L. Kelley, Lillian Reichenthal, Leslie Hartz, Robert Petre, Brian J. Williams, Matteo Guainazzi, Elisa Costantini, Ryuichi Fujimoto, Kiyoshi Hayashida, Joy Henegar-Leon, Matt Holland, Yoshitaka Ishisaki, Caroline Kilbourne, Mike Loewenstein, Kyoko Matsushita, Koji Mori, Takashi Okajima, F. Scott Porter, Gary Sneiderman, Yoh Takei, Yukikatsu Terada, Hiroshi Tomida, Hiroya Yamaguchi, Shin Watanabe, Hiroki Akamatsu, Yoshitaka Arai, Marc Audard, Hisamitsu Awaki, Iurii Babyk, Aya Bamba, Nobutaka Bando, Ehud Behar, Thomas Bialas, Rozenn Boissay-Malaquin, Laura Brenneman, Greg Brown, Edgar Canavan, Meng Chiao, Brian Comber, Lia Corrales, Renata Cumbee, Cor de Vries, Jan-Willem den Herder, Johannes Dercksen, Maria Diaz-Trigo, Michael DiPirro, Chris Done, Tadayasu Dotani, Ken Ebisawa, Megan Eckart, Dominique Eckert, Satoshi Eguchi, Teruaki Enoto, Yuichiro Ezoe, Carlo Ferrigno, Yutaka Fujita, Yasushi Fukazawa, Akihiro Furuzawa, Luigi Gallo, Nathalie Gorter, Martin Grim, Liyi Gu, Kouichi Hagino, Kenji Hamaguchi, Isamu Hatsukade, David Hawthorn, Katsuhiro Hayashi, Natalie Hell, Junko Hiraga, Edmund Hodges-Kluck, Takafumi Horiuchi, Ann Hornschemeier, Akio Hoshino, Yuto Ichinohe, Sayuri Iga, Ryo Iizuka, Manabu Ishida, Naoki Ishihama, Kumi Ishikawa, Kosei Ishimura, Tess Jaffe, Jelle Kaastra, Timothy Kallman, Erin Kara, Satoru Katsuda, Steven Kenyon, Mark Kimball, Takao Kitaguti, Shunji Kitamoto, Shogo Kobayashi, Akihide Kobayashi, Takayoshi Kohmura, Aya Kubota, Maurice Leutenegger, Muzi Li, Tom Lockard, Yoshitomo Maeda, Maxim Markevitch, Connor Martz, Hironori Matsumoto, Keiichi Matsuzaki, Dan McCammon, Brian McLaughlin, Brian McNamara, Joseph Miko, Eric Miller, Jon Miller, Kenji Minesugi, Shinji Mitani, Ikuyuki Mitsuishi, Misaki Mizumoto, Tsunefumi Mizuno, Koji Mukai, Hiroshi Murakami, Richard Mushotzky, Hiroshi Nakajima, Hideto Nakamura, Kazuhiro Nakazawa, Chikara Natsukari, Kenichiro Nigo, Yusuke Nishioka, Kumiko Nobukawa, Masayoshi Nobukawa, Hirofumi Noda, Hirokazu Odaka, Mina Ogawa, Takaya Ohashi, Masahiro Ohno, Masayuki Ohta, Atsushi Okamoto, Naomi Ota, Masanobu Ozaki, Stephane Paltani, Paul Plucinsky, Katja Pottschmidt, Michael Sampson, Takahiro Sasaki, Kosuke Sato, Rie Sato, Toshiki Sato, Makoto Sawada, Hiromi Seta, Yasuko Shibano, Maki Shida, Megumi Shidatsu, Shuhei Shigeto, Keisuke Shinozaki, Peter Shirron, Aurora Simionescu, Randall Smith, Kazunori Someya, Yang Soong, Keisuke Sugawara, Yasuharu Sugawara, Andy Szymkowiak, Hiromitsu Takahashi, Toshiaki Takeshima, Toru Tamagawa, Keisuke Tamura, Takaaki Tanaka, Atsushi Tanimoto, Yuichi Terashima, Yohko Tsuboi, Masahiro Tsujimoto, Hiroshi Tsunemi, Takeshi Tsuru, Hiroyuki Uchida, Yuusuke Uchida, Hideki Uchiyama, Yoshihiro Ueda, Shinichiro Uno, Jacco Vink, Tomomi Watanabe, Michael Wittheof, Rob Wolfs, Shinya Yamada, Kazutaka Yamaoka, Noriko Yamasaki, Makoto Yamauchi, Shigeo Yamauchi, Keiichi Yanagase, Tahir Yaqoob, Susumu Yasuda, Tessei Yoshida, Nasa Yoshioka, Irina Zhuravleva
    Space Telescopes and Instrumentation 2020: Ultraviolet to Gamma Ray 2020年12月13日  
  • Tenyo Kawamura, Tadashi Orita, Shin'ichiro Takeda, Shin Watanabe, Hirokazu Ikeda, Tadayuki Takahashi
    Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 982 2020年12月1日  査読有り
    We present our latest ASIC, which is used for the readout of Cadmium Telluride double-sided strip detectors (CdTe DSDs) and high spectroscopic imaging. It is implemented in a 0.35 μm CMOS technology (X-Fab XH035), consists of 64 readout channels and has a function that performs simultaneous AD conversion for each channel. The equivalent noise charge of 54.9e− ± 11.3e− (rms) is measured without connecting the ASIC to any detectors. From the spectroscopy measurements using a CdTe single-sided strip detector, the energy resolution of 1.12 keV (FWHM) is obtained at 13.9 keV, and photons within the energy from 6.4 keV to 122.1 keV are detected. Based on the experimental results, we propose a new low-noise readout architecture making use of a slew-rate limited mode at the shaper followed by a peak detector circuit.
  • Bamba, Aya, Watanabe, Eri, Mori, Koji, Shibata, Shinpei, Terada, Yukikatsu, Sano, Hidetoshi, Filipovic, Miroslav D.
    Astrophysics and Space Science 365(11) 2020年11月  
  • Kento Furukawa, Shunsaku Nagasawa, Lindsay Glesener, Miho Katsuragawa, Shin'ichiro Takeda, Shin Watanabe, Tadayuki Takahashi
    Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 978 2020年10月21日  査読有り
    We have evaluated the performance of a fine pitch CdTe Double-sided Strip Detector (CdTe-DSD), which was originally developed for the focal plane detector of a hard X-ray telescope to observe the Sun. The detector has a thickness of 750 μm and has 128 strip electrodes with a 60 μm strip pitch orthogonally placed on both sides of the detector and covers an energy range 4 keV to 80 keV. The study of the depth of photon interaction and charge sharing effects are of importance in order to provide good spectroscopic and imaging performance. We study the tail structure observed in the spectra caused by charge trapping and develop a new method to reconstruct the spectra based on induced charge information from both anode and cathode strips. By applying this method, energy resolutions (FWHM) of 0.76 keV and 1.0 keV can be obtained at photon energies of 14 keV and 60 keV, respectively, if the energy difference between the anode and cathode is within 1 keV. Furthermore, the tail component at 60 keV is reduced, and the energy resolution of the 60 keV peak is improved from 2.4 keV to 1.5 keV (FWHM) if the energy difference is greater than 1 keV. In order to study the imaging performance, we constructed a simple imaging system using a 5 mm thick tungsten plate that has a pinhole with a diameter of 100 μm. We utilize a 133Ba radioisotope of 1 mm in diameter as a target source in combination with a 100 μm slit made from 0.5 mm thickness tungsten. We imaged the 133Ba source behind the 100 μm slit using a 30 keV peak, with a 100 μm pinhole placed at the center of the source-detector distance. By applying a charge sharing correction between strips, we have succeeded in obtaining a position resolution better than the strip pitch of 60 μm.
  • Kemmer, J., Stock, S., Kossakowski, D., Kaminski, A., Molaverdikhani, K., Schlecker, M., Caballero, J. A., Amado, P. J., Astudillo-Defru, N., Bonfils, X., Ciardi, D., Collins, K. A., Espinoza, N., Fukui, A., Hirano, T., Jenkins, J. M., Latham, D. W., Matthews, E. C., Narita, N., Pallé, E., Parviainen, H., Quirrenbach, A., Reiners, A., Ribas, I., Ricker, G., Schlieder, J. E., Seager, S., Vanderspek, R., Winn, J. N., Almenara, J. M., Béjar, V. J. S., Bluhm, P., Bouchy, F., Boyd, P., Christiansen, J. L., Cifuentes, C., Cloutier, R., Collins, K. I., Cortés-Contreras, M., Crossfield, I. J. M., Crouzet, N., de Leon, J. P., Della-Rose, D. D., Delfosse, X., Dreizler, S., Esparza-Borges, E., Essack, Z., Forveille, Th., Figueira, P., Galadí-Enríquez, D., Gan, T., Glidden, A., Gonzales, E. J., Guerra, P., Harakawa, H., Hatzes, A. P., Henning, Th., Herrero, E., Hodapp, K., Hori, Y., Howell, S. B., Ikoma, M., Isogai, K., Jeffers, S. V., Kürster, M., Kawauchi, K., Kimura, T., Klagyivik, P., Kotani, T., Kurokawa, T., Kusakabe, N., Kuzuhara, M., Lafarga, M., Livingston, J. H., Luque, R., Matson, R., Morales, J. C., Mori, M., Muirhead, P. S., Murgas, F., Nishikawa, J., Nishiumi, T., Omiya, M., Reffert, S., Rodríguez López, C., Santos, N. C., Schöfer, P., Schwarz, R. P., Shiao, B., Tamura, M., Terada, Y., Twicken, J. D., Ueda, A., Vievard, S., Watanabe, N., Zechmeister, M.
    Astronomy and Astrophysics 642 2020年10月  
    We present the confirmation and characterisation of GJ 3473 b (G 50-16, TOI-488.01), a hot Earth-sized planet orbiting an M4 dwarf star, whose transiting signal (P = 1.1980035 ± 0.0000018 d) was first detected by the Transiting Exoplanet Survey Satellite (TESS). Through a joint modelling of follow-up radial velocity observations with CARMENES, IRD, and HARPS together with extensive ground-based photometric follow-up observations with LCOGT, MuSCAT, and MuSCAT2, we determined a precise planetary mass, Mb = 1.86 ± 0.30 M, and radius, Rb = 1.264 ± 0.050 R. Additionally, we report the discovery of a second, temperate, non-transiting planet in the system, GJ 3473 c, which has a minimum mass, Mc sin i = 7.41 ± 0.91 M, and orbital period, Pc = 15.509 ± 0.033 d. The inner planet of the system, GJ 3473 b, is one of the hottest transiting Earth-sized planets known thus far, accompanied by a dynamical mass measurement, which makes it a particularly attractive target for thermal emission spectroscopy. <P />RV data are only available at the CDS via anonymous ftp to <A href="http://cdsarc.u-strasbg.fr">http://cdsarc.u-strasbg.fr</A> (ftp://130.79.128.5) or via <A href="http://cdsarc.u-strasbg.fr/viz-bin/cat/J/A+A/642/A236">http://cdsarc.u-strasbg.fr/viz-bin/cat/J/A+A/642/A236</A>...
  • Satoru Katsuda, Masanori Ohno, Koji Mori, Tatsuhiko Beppu, Yoshiaki Kanemaru, Makoto S. Tashiro, Yukikatsu Terada, Kosuke Sato, Kae Morita, Hikari Sagara, Futa Ogawa, Haruya Takahashi, Hiroshi Murakami, Masayoshi Nobukawa, Hiroshi Tsunemi, Kiyoshi Hayashida, Hironori Matsumoto, Hirofumi Noda, Hiroshi Nakajima, Yuichiro Ezoe, Yohko Tsuboi, Yoshitomo Maeda, Takaaki Yokoyama, Noriyuki Narukage
    The Astrophysical Journal 891(2) 126-126 2020年3月12日  
  • Takashi Nakano, Makoto Sakai, Kota Torikai, Yoshiyuki Suzuki, Shin’ichiro Takeda, Shin-ei Noda, Mitsutaka Yamaguchi, Yuto Nagao, Mikiko Kikuchi, Hirokazu Odaka, Tomihiro Kamiya, Naoki Kawachi, Shin Watanabe, Kazuo Arakawa, Tadayuki Takahashi
    Physics in Medicine & Biology 65(5) 05LT01 2020年3月1日  
    The Compton camera can simultaneously acquire images of multiple isotopes injected in a body; therefore, it has the potential to introduce a new subfield in the field of biomedical imaging applications. The objective of this study is to assess the ability of a prototype semiconductor-based silicon/cadmium telluride (Si/CdTe) Compton camera to simultaneously image the distributions of technetium (99mTc)-dimercaptosuccinic acid (DMSA) (141 keV emission) and 18F-fluorodeoxyglucose (FDG) (511 keV emission) injected into a human volunteer. 99mTc-DMSA and 18F-FDG were injected intravenously into a 25-year-old male volunteer. The distributions of 99mTc-DMSA and 18F-FDG were simultaneously made visible by setting a specified energy window for each radioisotope. The images of these radiopharmaceuticals acquired using the prototype Compton camera were superimposed onto computed tomography images for reference. The reconstructed image showed that 99mTc-DMSA had accumulated in both kidneys, which is consistent with the well-known diagnostic distribution determined by clinical imaging via single-photon emission computed tomography. In the 18F-FDG image, there is broad distribution around the liver and kidneys, which was expected based on routine clinical positron emission tomography imaging. The current study demonstrated for the first time that the Si/CdTe Compton camera was capable of simultaneously imaging the distributions of two radiopharmaceuticals, 99mTc-DMSA and 18F-FDG, in a human body. These results suggest that the Si/CdTe Compton camera has the potential to become a novel modality for nuclear medical diagnoses enabling multi-probe simultaneous tracking.
  • Mizuki Uenomachi, Yuki Mizumachi, Yuri Yoshihara, Hiroyuki Takahashi, Kenji Shimazoe, Goro Yabu, Hiroki Yoneda, Shin Watanabe, Shin'ichiro Takeda, Tadashi Orita, Tadayuki Takahashi, Fumiki Moriyama, Hirotaka Sugawara
    Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 954 2020年2月21日  
    Compton imaging is a promising gamma-ray imaging method based on the Compton scattering kinematics due to high Compton scattering probability for sub-MeV to MeV gamma-rays. A conventional Compton camera has a disadvantage of low signal-to-background ratio (SBR), which is caused by drawing of multiple Compton cones. A method to solve this fundamental problem is the double-photon emission computed tomography (DPECT), which uses the coincidence detection for cascade gamma-rays and significantly increases the SBR using intersections of two Compton cones. In this study, we demonstrated the DPECT method by using 134Cs radio isotope, which is one of important radioisotopes for the imaging of fuel debris, with two Ce:Gd3(Al,Ga)5O12 (GAGG) scintillator Compton cameras.
  • Katsukura, Daisuke, Sakamoto, Takanori, Tashiro, Makoto S., Terada, Yukikatsu
    The Astrophysical Journal 2020年2月  
    We have performed a systematic study of gamma-ray bursts (GRBs), which have various values in the peak energy of the νFν spectrum of prompt emission, Epeak, observed by the Swift/Burst Alert Telescope (BAT) and Fermi/Gamma-ray Burst Monitor, investigating their prompt and X-ray afterglow emissions. We cataloged long-lasting GRBs observed by Swift between 2004 December and 2014 February in three categories according to the classification by Sakamoto et al.: X-ray flashes (XRFs), X-ray-rich GRBs (XRRs), and classical GRBs (C-GRBs). We then derived ${E}_{\mathrm{peak } }^{\mathrm{obs } }$ , as well as ${E}_{\mathrm{peak } }^{\mathrm{src } }$ if viable, of the Swift spectra of their prompt emission. We also analyzed their X-ray afterglows and found that GRB events with a lower ${E}_{\mathrm{peak } }^{\mathrm{src } }$ , I.e., softer GRBs, are fainter in 0.3-10 keV X-ray luminosity and decay more slowly than harder GRBs. The intrinsic event rates of the XRFs, XRRs, and C-GRBs were calculated using the Swift/BAT trigger algorithm. Those of the XRRs and XRFs are larger than that of the C-GRBs. If we assume that the observational diversity of Epeak is explained using the off-axis model, these results yield a jet half-opening angle of Δθ ∼ 0°3, and a variance of the observing angles θobs ≲ 0°6. This implies that this tiny variance would be responsible for the Epeak diversity observed by Swift/BAT, which is unrealistic. Therefore, we conclude that the Epeak diversity is not explained with the off-axis model, but is likely to originate from some intrinsic properties of the jets....
  • 中澤 知洋, 森 浩二, 鶴 剛, 上田 佳宏, 石田 学, 松本 浩典, 粟木 久光, 村上 弘志, 寺田 幸功, 久保田 あや, 馬場 彩, 小高 裕和, 谷津 陽一, 幸村 孝由, 萩野 浩一, 小林 翔悟, 内山 泰伸, 北山 哲, 高橋 忠幸, 渡辺 伸, 飯塚 亮, 山口 弘悦, 大橋 隆哉, 中嶋 大, 古澤 彰浩, 田中 孝明, 内田 裕之, 野田 博文, 常深 博, 伊藤 真之, 信川 正順, 信川 久実子, 太田 直美, 寺島 雄一, 深沢 泰司, 水野 恒史, 高橋 弘充, 大野 雅功, 武田 彩希, 岡島 崇, 他FORCE WG
    日本物理学会講演概要集 75.1 523-523 2020年  
  • Hagino, Kouichi, Odaka, Hirokazu, Sato, Goro, Sato, Tamotsu, Suzuki, Hiromasa, Mizuno, Tsunefumi, Kawaharada, Madoka, Ohno, Masanori, Nakazawa, Kazuhiro, Kobayashi, Shogo B., Murakami, Hiroaki, Miyake, Katsuma, Asai, Makoto, Koi, Tatsumi, Madejski, Greg, Saito, Shinya, Wright, Dennis H., Enoto, Teruaki, Fukazawa, Yasushi, Hayashi, Katsuhiro, Kataoka, Jun, Katsuta, Junichiro, Kokubun, Motohide, Laurent, Philippe, Lebrun, Francois, Limousin, Olivier, Maier, Daniel, Makishima, Kazuo, Mori, Kunishiro, Nakamori, Takeshi, Nakano, Toshio, Noda, Hirofumi, Ohta, Masayuki, Sato, Rie, Tajima, Hiroyasu, Takahashi, Hiromitsu, Takahashi, Tadayuki, Takeda, Shin'ichiro, Tanaka, Takaaki, Terada, Yukikatsu, Uchiyama, Hideki, Uchiyama, Yasunobu, Watanabe, Shin, Yamaoka, Kazutaka, Yatsu, Yoichi, Yuasa, Takayuki
    Journal of Astronomical Telescopes, Instruments, and Systems 6(4) 2020年  
    Understanding and reducing in-orbit instrumental backgrounds are essential to achieving high sensitivity in hard x-ray astronomical observations. The observational data of the Hard X-ray Imager (HXI) onboard the Hitomi satellite provide useful information on the background components due to its multilayer configuration with different atomic numbers: the HXI consists of a stack of four layers of Si (Z = 14) detectors and one layer of cadmium telluride (CdTe) (Z = 48, 52) detector surrounded by well-type Bi4Ge3O12 active shields. Based on the observational data, the backgrounds of the top Si layer, the three underlying Si layers, and the CdTe layer are inferred to be dominated by different components, namely, low-energy electrons, albedo neutrons, and proton-induced radioactivation, respectively. Monte Carlo simulations of the in-orbit background of the HXI reproduce the observed background spectrum of each layer well, thereby quantitatively verifying the above hypothesis. In addition, we suggest the inclusion of an electron shield to reduce the background....
  • Madsen, K. K., Terada, Y., Burwitz, V., Belanger, G., Grant, C. E., Guainazzi, M., Kashyap, V., Marshall, H. L., Miller, E. D., Natalucci, L., Plucinsky, P. P.
    2020年1月  
    We summarize the 14th meeting of the International Astronomical Consortium for High Energy Calibration (IACHEC) held at \textit{Shonan Village} (Kanagawa, Japan) in May 2019. Sixty scientists directly involved in the calibration of operational and future high-energy missions gathered during 3.5 days to discuss the status of the cross-calibration between the current international complement of X-ray observatories, and the possibilities to improve it. This summary consists of reports from the various WGs with topics ranging from the identification and characterization of standard calibration sources, multi-observatory cross-calibration campaigns, appropriate and new statistical techniques, calibration of instruments and characterization of background, communication and preservation of knowledge, and results for the benefit of the astronomical community....
  • Michael Loewenstein, Robert S. Hill, Matthew P. Holland, Eric D. Miller, Tahir Yaqoob, Trisha F. Doyle, Patricia L. Hall, Efrem Braun, Chris Baluta, Koji Mukai, Yukikatsu Terada, Makoto Tashiro, Hiromitsu Takahashi, Masayoshi Nobukawa, Tsunefumi Mizuno, Takayuki Tamura, Shin'ichiro Uno, Shin Watanabe, Ken Ebisawa, Satoshi Eguchi, Yasushi Fukazawa, Katsuhiro Hayashi, Ryo Iizuka, Satoru Katsuda, Takao Kitaguchi, Aya Kubota, Shinya Nakashima, Kazuhiro Nakazawa, Hirokazu Odaka, Masanori Ohno, Naomi Ota, Rie Sato, Yasuharu Sugawara, Megumi Shidatsu, Tsubasa Tamba, Atsushi Tanimoto, Yuichi Terashima, Yohko Tsuboi, Yuusuke Uchida, Hideki Uchiyama, Shigeo Yamauchiq
    Proceedings of SPIE - The International Society for Optical Engineering 11444 2020年  
    © 2020 SPIE The X-Ray Imaging and Spectroscopy Mission, XRISM, is currently scheduled to launch in 2022 with the objective of building on the brief, but significant, successes of the ASTRO-H (Hitomi) mission in solving outstanding astrophysical questions using high resolution X-ray spectroscopy. The XRISM Science Operations Team (SOT) consists of the JAXA-led Science Operations Center (SOC) and NASA-led Science Data Center (SDC), which work together to optimize the scientific output from the Resolve high-resolution spectrometer and the Xtend wide-field imager through planning and scheduling of observations, processing and distribution of data, development and distribution of software tools and the calibration database (CaldB), support of ground and in-flight calibration, and support of XRISM users in their scientific investigations of the energetic universe. Here, we summarize the roles and responsibilities of the SDC and its current status and future plans. The Resolve instrument poses particular challenges due to its unprecedented combination of high spectral resolution and throughput, broad spectral coverage, and relatively small field-of-view and large pixel-size. We highlight those challenges and how they are being met.
  • Yukikatsu Terada, Matt Holland, Michael Loewenstein, Makoto Tashiro, Hiromitsu Takahashi, Masayoshi Nobukawa, Tsunefumi Mizuno, Takayuki Tamura, Shin'ichiro Uno, Shin Watanabe, Chris Baluta, Laura Burns, Ken Ebisawa, Satoshi Eguchi, Yasushi Fukazawa, Katsuhiro Hayashi, Ryo Iizuka, Satoru Katsuda, Takao Kitaguchi, Aya Kubota, Eric Miller, Koji Mukai, Shinya Nakashima, Kazuhiro Nakazawa, Hirokazu Odaka, Masanori Ohno, Naomi Ota, Rie Sato, Yasuharu Sugawara, Megumi Shidatsu, Tsubasa Tamba, Atsushi Tanimoto, Yuichi Terashima, Yohko Tsuboi, Yuusuke Uchida, Hideki Uchiyama, Shigeo Yamauchi, Tahir Yaqoob
    Proceedings of SPIE - The International Society for Optical Engineering 11444 2020年  
    © 2020 SPIE The XRISM is the X-ray astronomical mission led by JAXA/NASA/ESA with international participation, plan to be launched in 2022 (Japanese fiscal year), to quickly recover the high-resolution X-ray spectroscopy of astrophysical objects using the micro-calorimeter array after the failure of Hitomi. To enhance the scientific outputs of the mission, the Science Operations Team (SOT) is structured independently from the instrument teams and the mission operation team (MOT). The responsibilities of the SOT are summarized into four categories: 1) Guest observer program and data distributions, 2) Distribution of the analyses software and calibration database, 3) Guest observer supporting activities, and 4) the performance verification and optimization (PVO) activities. Before constructing the Operations Concept of the XRISM mission, the lessons on the Science Operations learned from the past Japanese X-ray missions (ASCA, Suzaku, and Hitomi) are reviewed, and 16 kinds of lessons are identified by the above categories: lessons on the importance of avoiding nonpublic (“animal”) tools, coding quality of public tools both on the engineering viewpoint and the calibration accuracy, tight communications with instrument teams and operations team, well-defined task division between scientists and engineers etc. Among these lessons, a) importance of the early preparations of the operations from the ground stage, b) construction of the independent team for the Science Operations from the instrument developments, and c) operations with well-defined duties by appointed members are recognized as the key lessons for XRISM. Then, i) the task division between the Mission and Science Operations and ii) the subgroup structure within the XRISM team are defined in detail as the XRISM Operations Concept. Then, following the Operations Concept, the detail plan of the Science Operations is designed as follows. The Science Operations tasks are shared among Japan, US, and Europe operated by three centers, the Science Operations Center (SOC) at JAXA, the Science Data Center (SDC) at NASA, and European Space Astronomy Centre (ESAC) at ESA. The SOT is defined as a combination of the SOC and SDC; the SOC is designed to perform tasks close to the spacecraft operations, such as spacecraft planning of science targets, quick-look health checks, pre-pipeline data processing, etc., and the SDC covers the tasks on the data calibration processing (pipeline processing), maintenance of the analysis tools etc. The data-archive and users-support activities are planned to be covered both by the SOC and SDC. Finally, the details of the Science Operations tasks and the tools for the Science Operations are also described in this paper. This information would be helpful for a construction of Science Operations of future X-ray missions.
  • Ohmori Norisuke, Yamaoka Kazutaka, Yamauchi Makoto, Urata Yuji, Ohno Masanori, Sugita Satoshi, Hurley Kevin, Tashiro Makoto S, Fukazawa Yasushi, Iwakiri Wataru, Katsukura Daisuke, Kokubun Motohide, Makishima Kazuo, Murakami Souta, Nakagawa Yujin E, Nakazawa Kazuhiro, Odaka Katsuya, Takahashi Kaito, Takahashi Tadayuki, Terada Yukikatsu
    PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF JAPAN 71(4) 2019年8月  査読有り
  • Kento Furukawa, Juan Camilo Buitrago-Casas, Juliana Vievering, Kouichi Hagino, Lindsay Glesener, P. S. Athiray, Säm Krucker, Shin Watanabe, Shin'ichiro Takeda, Shin'nosuke Ishikawa, Sophie Musset, Steven Christe, Tadayuki Takahashi
    Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 924 321-326 2019年4月  査読有り
    © 2018 Elsevier B.V. FOXSI-3 (Focusing Optics X-ray Solar Imager) is an international sounding rocket experiment to observe hard X-rays from the Sun. The previous two flights successfully demonstrated the efficacy of the concept of direct solar imaging in hard X-ray band. For the third launch scheduled in the summer of 2018, we have fabricated a prototype of the CdTe Double-sided Strip Detector. To evaluate the basic performance, laboratory tests were conducted. Energy resolution (FWHM) of 0.8 keV at 13.9 keV and 1.3 keV at 59.5 keV are confirmed. Since the optic angular resolution is finer than the strip pitch of the detector at the focal plane, sub-strip position determination is important to make full use of the high precision of the optic. To test the possibility of sub-strip resolution, we developed a new method of investigating the detector strips with a fine multi-pinhole collimator. The results of the analysis were highly favorable and we confirmed the sub-strip resolution by making sub-strip images of multi-pinholes and flat-irradiation. The spectral uniformity over the detector is also confirmed using the sub-strip image of flat-irradiation.
  • Masanori Ohno, Yasushi Fukazawa, Tsunefumi Mizuno, Hiromitsu Takahashi, Yasuyuki Tanaka, Jun'ichiro Katsuta, Takafumi Kawano, Sho Habata, Chiho Okada, Norie Ohashi, Takuto Teramae, Koji Tanaka, Tadayuki Takahashi, Motohide Kokubun, Shin Watanabe, Goro Sato, Rie Sato, Masayuki Ohta, Yusuke Uchida, Ryota Tamaru, Hiroki Yoneda, Kazuhiro Nakazawa, Hiroaki Murakami, Hiroyasu Tajima, Kazutaka Yamaoka, Masaomi Kinoshita, Katsuhiro Hayashi, Takao Kitaguchi, Hirokazu Odaka
    Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 924 327-331 2019年4月  査読有り
    © 2018 Elsevier B.V. The soft gamma-ray detector (SGD) onboard Hitomi, which has a unique design concept, based on the combination of a ”narrow-field multi-layer semi-conductor Compton camera” and an active shielding, realizes astronomical observations in the 60−600 keV energy band with a high sensitivity. Development of optimum event selection criteria is essential for deriving the best observational performance of the SGD, but it is challenging because many parameters such as the detected photon energy, the Compton-scattering angle, and distance of each hit, among others, are non-linearly correlated. In this study, we propose a new method for distinguishing the signal from the background in the multi-parameter space utilizing a machine-learning approach. Our preliminary result, which uses both on-ground experimental data with good photon statistics and flight data with real in-orbit background and signal information, suggests that this approach might a good guide for an optimal event selection by the Compton camera.
  • Cherenkov Telescope Array Consortium, Acharya, B. S., Agudo, I., Al Samarai, I., Alfaro, R., Alfaro, J., Alispach, C., Alves Batista, R., Amans, J. -P., Amato, E., Ambrosi, G., Antolini, E., Antonelli, L. A., Aramo, C., Araya, M., Armstrong, T., Arqueros, F., Arrabito, L., Asano, K., Ashley, M., Backes, M., Balazs, C., Balbo, M., Ballester, O., Ballet, J., Bamba, A., Barkov, M., Barres de Almeida, U., Barrio, J. A., Bastieri, D., Becherini, Y., Belfiore, A., Benbow, W., Berge, D., Bernardini, E., Bernardini, M. G., Bernardos, M., Bernlöhr, K., Bertucci, B., Biasuzzi, B., Bigongiari, C., Biland, A., Bissaldi, E., Biteau, J., Blanch, O., Blazek, J., Boisson, C., Bolmont, J., Bonanno, G., Bonardi, A., Bonavolontà, C., Bonnoli, G., Bosnjak, Z., Böttcher, M., Braiding, C., Bregeon, J., Brill, A., Brown, A. M., Brun, P., Brunetti, G., Buanes, T., Buckley, J., Bugaev, V., Bühler, R., Bulgarelli, A., Bulik, T., Burton, M., Burtovoi, A., Busetto, G., Canestrari, R., Capalbi, M., Capitanio, F., Caproni, A., Caraveo, P., Cárdenas, V., Carlile, C., Carosi, R., Carquín, E., Carr, J., Casanova, S., Cascone, E., Catalani, F., Catalano, O., Cauz, D., Cerruti, M., Chadwick, P., Chaty, S., Chaves, R. C. G., Chen, A., Chen, X., Chernyakova, M., Chikawa, M., Christov, A., Chudoba, J., Cieślar, M., Coco, V., Colafrancesco, S., Colin, P., Conforti, V., Connaughton, V., Conrad, J., Contreras, J. L., Cortina, J., Costa, A., Costantini, H., Cotter, G., Covino, S., Crocker, R., Cuadra, J., Cuevas, O., Cumani, P., D'Aì, A., D'Ammando, F., D'Avanzo, P., D'Urso, D., Daniel, M., Davids, I., Dawson, B., Dazzi, F., De Angelis, A., de Cássia dos Anjos, R., De Cesare, G., De Franco, A., de Gouveia Dal Pino, E. M., de la Calle, I., de los Reyes Lopez, R., De Lotto, B., De Luca, A., De Lucia, M., de Naurois, M., de Oña Wilhelmi, E., De Palma, F., De Persio, F., de Souza, V., Deil, C., Del Santo, M., Delgado, C., della Volpe, D., Di Girolamo, T., Di Pierro, F., Di Venere, L., Díaz, C., Dib, C., Diebold, S., Djannati-Ataï, A., Domínguez, A., Dominis Prester, D., Dorner, D., Doro, M., Drass, H., Dravins, D., Dubus, G., Dwarkadas, V. V., Ebr, J., Eckner, C., Egberts, K., Einecke, S., Ekoume, T. R. N., Elsässer, D., Ernenwein, J. -P., Espinoza, C., Evoli, C., Fairbairn, M., Falceta-Goncalves, D., Falcone, A., Farnier, C., Fasola, G., Fedorova, E., Fegan, S., Fernandez-Alonso, M., Fernández-Barral, A., Ferrand, G., Fesquet, M., Filipovic, M., Fioretti, V., Fontaine, G., Fornasa, M., Fortson, L., Freixas Coromina, L., Fruck, C., Fujita, Y., Fukazawa, Y., Funk, S., Füßling, M., Gabici, S., Gadola, A., Gallant, Y., Garcia, B., Garcia López, R., Garczarczyk, M., Gaskins, J., Gasparetto, T., Gaug, M., Gerard, L., Giavitto, G., Giglietto, N., Giommi, P., Giordano, F., Giro, E., Giroletti, M., Giuliani, A., Glicenstein, J. -F., Gnatyk, R., Godinovic, N., Goldoni, P., Gómez-Vargas, G., González, M. M., González, J. M., Götz, D., Graham, J., Grandi, P., Granot, J., Green, A. J., Greenshaw, T., Griffiths, S., Gunji, S., Hadasch, D., Hara, S., Hardcastle, M. J., Hassan, T., Hayashi, K., Hayashida, M., Heller, M., Helo, J. C., Hermann, G., Hinton, J., Hnatyk, B., Hofmann, W., Holder, J., Horan, D., Hörandel, J., Horns, D., Horvath, P., Hovatta, T., Hrabovsky, M., Hrupec, D., Humensky, T. B., Hütten, M., Iarlori, M., Inada, T., Inome, Y., Inoue, S., Inoue, T., Inoue, Y., Iocco, F., Ioka, K., Iori, M., Ishio, K., Iwamura, Y., Jamrozy, M., Janecek, P., Jankowsky, D., Jean, P., Jung-Richardt, I., Jurysek, J., Kaaret, P., Karkar, S., Katagiri, H., Katz, U., Kawanaka, N., Kazanas, D., Khélifi, B., Kieda, D. B., Kimeswenger, S., Kimura, S., Kisaka, S., Knapp, J., Knödlseder, J., Koch, B., Kohri, K., Komin, N., Kosack, K., Kraus, M., Krause, M., Krauß, F., Kubo, H., Kukec Mezek, G., Kuroda, H., Kushida, J., La Palombara, N., Lamanna, G., Lang, R. G., Lapington, J., Le Blanc, O., Leach, S., Lees, J. -P., Lefaucheur, J., Leigui de Oliveira, M. A., Lenain, J. -P., Lico, R., Limon, M., Lindfors, E., Lohse, T., Lombardi, S., Longo, F., López, M., López-Coto, R., Lu, C. -C., Lucarelli, F., Luque-Escamilla, P. L., Lyard, E., Maccarone, M. C., Maier, G., Majumdar, P., Malaguti, G., Mandat, D., Maneva, G., Manganaro, M., Mangano, S., Marcowith, A., Marín, J., Markoff, S., Martí, J., Martin, P., Martínez, M., Martínez, G., Masetti, N., Masuda, S., Maurin, G., Maxted, N., Mazin, D., Medina, C., Melandri, A., Mereghetti, S., Meyer, M., Minaya, I. A., Mirabal, N., Mirzoyan, R., Mitchell, A., Mizuno, T., Moderski, R., Mohammed, M., Mohrmann, L., Montaruli, T., Moralejo, A., Morcuende-Parrilla, D., Mori, K., Morlino, G., Morris, P., Morselli, A., Moulin, E., Mukherjee, R., Mundell, C., Murach, T., Muraishi, H., Murase, K., Nagai, A., Nagataki, S., Nagayoshi, T., Naito, T., Nakamori, T., Nakamura, Y., Niemiec, J., Nieto, D., Nikołajuk, M., Nishijima, K., Noda, K., Nosek, D., Novosyadlyj, B., Nozaki, S., O'Brien, P., Oakes, L., Ohira, Y., Ohishi, M., Ohm, S., Okazaki, N., Okumura, A., Ong, R. A., Orienti, M., Orito, R., Osborne, J. P., Ostrowski, M., Otte, N., Oya, I., Padovani, M., Paizis, A., Palatiello, M., Palatka, M., Paoletti, R., Paredes, J. M., Pareschi, G., Parsons, R. D., Pe'er, A., Pech, M., Pedaletti, G., Perri, M., Persic, M., Petrashyk, A., Petrucci, P., Petruk, O., Peyaud, B., Pfeifer, M., Piano, G., Pisarski, A., Pita, S., Pohl, M., Polo, M., Pozo, D., Prandini, E., Prast, J., Principe, G., Prokhorov, D., Prokoph, H., Prouza, M., Pühlhofer, G., Punch, M., Pürckhauer, S., Queiroz, F., Quirrenbach, A., Rainò, S., Razzaque, S., Reimer, O., Reimer, A., Reisenegger, A., Renaud, M., Rezaeian, A. H., Rhode, W., Ribeiro, D., Ribó, M., Richtler, T., Rico, J., Rieger, F., Riquelme, M., Rivoire, S., Rizi, V., Rodriguez, J., Rodriguez Fernandez, G., Rodríguez Vázquez, J. J., Rojas, G., Romano, P., Romeo, G., Rosado, J., Rovero, A. C., Rowell, G., Rudak, B., Rugliancich, A., Rulten, C., Sadeh, I., Safi-Harb, S., Saito, T., Sakaki, N., Sakurai, S., Salina, G., Sánchez-Conde, M., Sandaker, H., Sandoval, A., Sangiorgi, P., Sanguillon, M., Sano, H., Santander, M., Sarkar, S., Satalecka, K., Saturni, F. G., Schioppa, E. J., Schlenstedt, S., Schneider, M., Schoorlemmer, H., Schovanek, P., Schulz, A., Schussler, F., Schwanke, U., Sciacca, E., Scuderi, S., Seitenzahl, I., Semikoz, D., Sergijenko, O., Servillat, M., Shalchi, A., Shellard, R. C., Sidoli, L., Siejkowski, H., Sillanpää, A., Sironi, G., Sitarek, J., Sliusar, V., Slowikowska, A., Sol, H., Stamerra, A., Stanič, S., Starling, R., Stawarz, Ł., Stefanik, S., Stephan, M., Stolarczyk, T., Stratta, G., Straumann, U., Suomijarvi, T., Supanitsky, A. D., Tagliaferri, G., Tajima, H., Tavani, M., Tavecchio, F., Tavernet, J. -P., Tayabaly, K., Tejedor, L. A., Temnikov, P., Terada, Y., Terrier, R., Terzic, T., Teshima, M., Testa, V., Thoudam, S., Tian, W., Tibaldo, L., Tluczykont, M., Todero Peixoto, C. J., Tokanai, F., Tomastik, J., Tonev, D., Tornikoski, M., Torres, D. F., Torresi, E., Tosti, G., Tothill, N., Tovmassian, G., Travnicek, P., Trichard, C., Trifoglio, M., Troyano Pujadas, I., Tsujimoto, S., Umana, G., Vagelli, V., Vagnetti, F., Valentino, M., Vallania, P., Valore, L., van Eldik, C., Vandenbroucke, J., Varner, G. S., Vasileiadis, G., Vassiliev, V., Vázquez Acosta, M., Vecchi, M., Vega, A., Vercellone, S., Veres, P., Vergani, S., Verzi, V., Vettolani, G. P., Viana, A., Vigorito, C., Villanueva, J., Voelk, H., Vollhardt, A., Vorobiov, S., Vrastil, M., Vuillaume, T., Wagner, S. J., Wagner, R., Walter, R., Ward, J. E., Warren, D., Watson, J. J., Werner, F., White, M., White, R., Wierzcholska, A., Wilcox, P., Will, M., Williams, D. A., Wischnewski, R., Wood, M., Yamamoto, T., Yamazaki, R., Yanagita, S., Yang, L., Yoshida, T., Yoshiike, S., Yoshikoshi, T., Zacharias, M., Zaharijas, G., Zampieri, L., Zandanel, F., Zanin, R., Zavrtanik, M., Zavrtanik, D., Zdziarski, A. A., Zech, A., Zechlin, H., Zhdanov, V. I., Ziegler, A., Zorn, J.
    2019年3月  
    The Cherenkov Telescope Array, CTA, will be the major global observatory for very high energy gamma-ray astronomy over the next decade and beyond. The scientific potential of CTA is extremely broad: from understanding the role of relativistic cosmic particles to the search for dark matter. CTA is an explorer of the extreme universe, probing environments from the immediate neighbourhood of black holes to cosmic voids on the largest scales. Covering a huge range in photon energy from 20 GeV to 300 TeV, CTA will improve on all aspects of performance with respect to current instruments. The observatory will operate arrays on sites in both hemispheres to provide full sky coverage and will hence maximize the potential for the rarest phenomena such as very nearby supernovae, gamma-ray bursts or gravitational wave transients. With 99 telescopes on the southern site and 19 telescopes on the northern site, flexible operation will be possible, with sub-arrays available for specific tasks. CTA will have important synergies with many of the new generation of major astronomical and astroparticle observatories. Multi-wavelength and multi-messenger approaches combining CTA data with those from other instruments will lead to a deeper understanding of the broad-band non-thermal properties of target sources. The CTA Observatory will be operated as an open, proposal-driven observatory, with all data available on a public archive after a pre-defined proprietary period. Scientists from institutions worldwide have combined together to form the CTA Consortium. This Consortium has prepared a proposal for a Core Programme of highly motivated observations. The programme, encompassing approximately 40% of the available observing time over the first ten years of CTA operation, is made up of individual Key Science Projects (KSPs), which are presented in this document....
  • Iwakiri, Wataru B., Pottschmidt, Katja, Falkner, Sebastian, Hemphill, Paul B., Furst, Felix, Nishimura, Osamu, Schwarm, Fritz-Walter, Wolff, Michael T., Marcu-Cheatham, Diana M., Chakrabarty, Deepto, Tomsick, John A., Wilson-Hodge, Colleen A., Kuehnel, Matthias Bissinger, Terada, Yukikatsu, Enoto, Teruaki, Wilms, Joern
    The Astrophysical Journal 2019年  
    We present an analysis of the spectral shape and pulse profile of the accretion-powered pulsar 4U 1626-67 observed with Suzaku and Nuclear Spectroscopic Telescope Array (NuSTAR) during a spin-up state. The pulsar, which experienced a torque reversal to spin-up in 2008, has a spin period of ∼7.7 s. Comparing the phase-averaged spectra obtained with Suzaku in 2010 and with NuSTAR in 2015, we find that the spectral shape changed between the two observations: the 3-10 keV flux increased by ∼5%, while the 30-60 keV flux decreased significantly by ∼35%. Phase-averaged and phase-resolved spectral analysis shows that the continuum spectrum observed by NuSTAR is well described by an empirical negative and positive power law times exponential continuum with an added broad Gaussian emission component around the spectral peak at ∼20 keV. Taken together with the observed \dot{P} value obtained from the Fermi/gamma-ray burst monitor data, we conclude that the spectral change between the Suzaku and NuSTAR observations was likely caused by an increase in the accretion rate. We also report the possible detection of asymmetry in the profile of the fundamental cyclotron line. Furthermore, we present a study of the energy-resolved pulse profiles using a new relativistic ray tracing code, where we perform a simultaneous fit to the pulse profiles assuming a two-column geometry with a mixed pencil- and fan-beam emission pattern. The resulting pulse profile decompositions enable us to obtain geometrical parameters of accretion columns (inclination, azimuthal and polar angles) and a fiducial set of beam patterns. This information is important to validate the theoretical predictions from radiation transfer in a strong magnetic field....
  • Acharya, B. S., Agudo, I., Al Samarai, I., Alfaro, R., Alfaro, J., Alispach, C., Batista, R. Alves, Amans, J. -P., Amato, E., Ambrosi, G., Antolini, E., Antonelli, L. A., Aramo, C., Araya, M., Armstrong, T., Arqueros, F., Arrabito, L., Asano, K., Ashley, M., Backes, M., Balazs, C., Balbo, M., Ballester, O., Ballet, J., Bamba, A., Barkov, M., Barres de Almeida, U., Barrio, J. A., Bastieri, D., Becherini, Y., Belfiore, A., Benbow, W., Berge, D., Bernardini, E., Bernardini, M. G., Bernardos, M., Bernloehr, K., Bertucci, B., Biasuzzi, B., Bigongiari, C., Biland, A., Bissaldi, E., Biteau, J., Blanch, O., Blazek, J., Boisson, C., Bolmont, J., Bonanno, G., Bonardi, A., Bonavolonta, C., Bonnoli, G., Bosnjak, Z., Bottcher, M., Braiding, C., Bregeon, J., Brill, A., Brown, A. M., Brun, P., Brunetti, G., Buanes, T., Buckley, J., Bugaev, V., Buehler, R., Bulgarelli, A., Bulik, T., Burton, M., Burtovoi, A., Busetto, G., Canestrari, R., Capalbi, M., Capitanio, F., Caproni, A., Caraveo, P., Cardenas, V., Carlile, C., Carosi, R., Carquin, E., Carr, J., Casanova, S., Cascone, E., Catalani, F., Catalano, O., Cauz, D., Cerruti, M., Chadwick, P., Chaty, S., Chaves, R. C. G., Chen, A., Chen, X., Chernyakova, M., Chikawa, M., Christov, A., Chudoba, J., Cieslar, M., Coco, V., Colafrancesco, S., Colin, P., Conforti, V., Connaughton, V., Conrad, J., Contreras, J. L., Cortina, J., Costa, A., Costantini, H., Cotter, G., Covino, S., Crocker, R., Cuadra, J., Cuevas, O., Cumani, P., D'Ai, A., D'Ammando, F., D'Avanzo, P., D'Urso, D., Daniel, M., Davids, I., Dawson, B., Dazzi, F., De Angelis, A., de Cassia dos Anjos, R., De Cesare, G., De Franco, A., De Gouveia Dal Pino, E. M., de la Calle, I., Lopez, R. de los Reyes, De Lotto, B., De Luca, A., De Lucia, M., de Naurois, M., de Ona Wilhelmi, E., De Palma, F., De Persio, F., de Souza, V., Deil, C., Del Santo, M., Delgado, C., della Volpe, D., Di Girolamo, T., Di Pierro, F., Di Venere, L., Diaz, C., Dib, C., Diebold, S., Djannati-Atai, A., Dominguez, A., Prester, D. Dominis, Dorner, D., Doro, M., Drass, H., Dravins, D., Dubus, G., Dwarkadas, V. V., Ebr, J., Eckner, C., Egberts, K., Einecke, S., Ekoume, T. R. N., Elsaesser, D., Ernenwein, J. -P., Espinoza, C., Evoli, C., Fairbairn, M., Falceta-Goncalves, D., Falcone, A., Farnier, C., Fasola, G., Fedorova, E., Fegan, S., Fernandez-Alonso, M., Fernandez-Barral, A., Ferrand, G., Fesquet, M., Filipovic, M., Fioretti, V., Fontaine, G., Fornasa, M., Fortson, L., Freixas Coromina, L., Fruck, C., Fujita, Y., Fukazawa, Y., Funk, S., Fuessling, M., Gabici, S., Gadola, A., Gallant, Y., Garcia, B., Garcia Lopez, R., Garczarczyk, M., Gaskins, J., Gasparetto, T., Gaug, M., Gerard, L., Giavitto, G., Giglietto, N., Giommi, P., Giordano, F., Giro, E., Giroletti, M., Giuliani, A., Glicenstein, J. -F., Gnatyk, R., Godinovic, N., Goldoni, P., Gomez-Vargas, G., Gonzalez, M. M., Gonzalez, J. M., Gotz, D., Graham, J., Grandi, P., Granot, J., Green, A. J., Greenshaw, T., Griffiths, S., Gunji, S., Hadasch, D., Hara, S., Hardcastle, M. J., Hassan, T., Hayashi, K., Hayashida, M., Heller, M., Helo, J. C., Hermann, G., Hinton, J., Hnatyk, B., Hofmann, W., Holder, J., Horan, D., Horandel, J., Horns, D., Horvath, P., Hovatta, T., Hrabovsky, M., Hrupec, D., Humensky, T. B., Huetten, M., Iarlori, M., Inada, T., Inome, Y., Inoue, S., Inoue, T., Inoue, Y., Iocco, F., Ioka, K., Iori, M., Ishio, K., Iwamura, Y., Jamrozy, M., Janecek, P., Jankowsky, D., Jean, P., Jung-Richardt, I., Jurysek, J., Kaaret, P., Karkar, S., Katagiri, H., Katz, U., Kawanaka, N., Kazanas, D., Khelifi, B., Kieda, D. B., Kimeswenger, S., Kimura, S., Kisaka, S., Knapp, J., Knodlseder, J., Koch, B., Kohri, K., Komin, N., Kosack, K., Kraus, M., Krause, M., Krauss, F., Kubo, H., Mezek, G. Kukec, Kuroda, H., Kushida, J., La Palombara, N., Lamanna, G., Lang, R. G., Lapington, J., Le Blanc, O., Leach, S., Lees, J. -P., Lefaucheur, J., Leigui de Oliveira, M. A., Lenain, J. -P., Lico, R., Limon, M., Lindfors, E., Lohse, T., Lombardi, S., Longo, F., Lopez, M., Lopez-Coto, R., Lu, C. -C., Lucarelli, F., Luque-Escamilla, P. L., Lyard, E., Maccarone, M. C., Maier, G., Majumdar, P., Malaguti, G., Mandat, D., Maneva, G., Manganaro, M., Mangano, S., Marcowith, A., Marin, J., Markoff, S., Marti, J., Martin, P., Martinez, M., Martinez, G., Masetti, N., Masuda, S., Maurin, G., Maxted, N., Mazin, D., Medina, C., Melandri, A., Mereghetti, S., Meyer, M., Minaya, I. A., Mirabal, N., Mirzoyan, R., Mitchell, A., Mizuno, T., Moderski, R., Mohammed, M., Mohrmann, L., Montaruli, T., Moralejo, A., Morcuende-Parrilla, D., Mori, K., Morlino, G., Morris, P., Morselli, A., Moulin, E., Mukherjee, R., Mundell, C., Murach, T., Muraishi, H., Murase, K., Nagai, A., Nagataki, S., Nagayoshi, T., Naito, T., Nakamori, T., Nakamura, Y., Niemiec, J., Nieto, D., Nikolajuk, M., Nishijima, K., Noda, K., Nosek, D., Novosyadlyj, B., Nozaki, S., O'Brien, P., Oakes, L., Ohira, Y., Ohishi, M., Ohm, S., Okazaki, N., Okumura, A., Ong, R. A., Orienti, M., Orito, R., Osborne, J. P., Ostrowski, M., Otte, N., Oya, I., Padovani, M., Paizis, A., Palatiello, M., Palatka, M., Paoletti, R., Paredes, J. M., Pareschi, G., Parsons, R. D., Pe'er, A., Pech, M., Pedaletti, G., Perri, M., Persic, M., Petrashyk, A., Petrucci, P., Petruk, O., Peyaud, B., Pfeifer, M., Piano, G., Pisarski, A., Pita, S., Pohl, M., Polo, M., Pozo, D., Prandini, E., Prast, J., Principe, G., Prokhorov, D., Prokoph, H., Prouza, M., Puehlhofer, G., Punch, M., Puerckhauer, S., Queiroz, F., Quirrenbach, A., Raino, S., Razzaque, S., Reimer, O., Reimer, A., Reisenegger, A., Renaud, M., Rezaeian, A. H., Rhode, W., Ribeiro, D., Ribo, M., Richtler, T., Rico, J., Rieger, F., Riquelme, M., Rivoire, S., Rizi, V., Rodriguez, J., Fernandez, G. Rodriguez, Rodriguez Vazquez, J. J., Rojas, G., Romano, P., Romeo, G., Rosado, J., Rovero, A. C., Rowell, G., Rudak, B., Rugliancich, A., Rulten, C., Sadeh, I., Safi-Harb, S., Saito, T., Sakaki, N., Sakurai, S., Salina, G., Sanchez-Conde, M., Sandaker, H., Sandoval, A., Sangiorgi, P., Sanguillon, M., Sano, H., Santander, M., Sarkar, S., Satalecka, K., Saturni, F. G., Schioppa, E. J., Schlenstedt, S., Schneider, M., Schoorlemmer, H., Schovanek, P., Schulz, A., Schussler, F., Schwanke, U., Sciacca, E., Scuderi, S., Seitenzahl, I., Semikoz, D., Sergijenko, O., Servillat, M., Shalchi, A., Shellard, R. C., Sidoli, L., Siejkowski, H., Sillanpaa, A., Sironi, G., Sitarek, J., Sliusar, V., Slowikowska, A., Sol, H., Stamerra, A., Stanic, S., Starling, R., Stawarz, L., Stefanik, S., Stephan, M., Stolarczyk, T., Stratta, G., Straumann, U., Suomijarvi, T., Supanitsky, A. D., Tagliaferri, G., Tajima, H., Tavani, M., Tavecchio, F., Tavernet, J. -P., Tayabaly, K., Tejedor, L. A., Temnikov, P., Terada, Y., Terrier, R., Terzic, T., Teshima, M., Testa, V., Thoudam, S., Tian, W., Tibaldo, L., Tluczykont, M., Todero Peixoto, C. J., Tokanai, F., Tomastik, J., Tonev, D., Tornikoski, M., Torres, D. F., Torresi, E., Tosti, G., Tothill, N., Tovmassian, G., Travnicek, P., Trichard, C., Trifoglio, M., Pujadas, I. Troyano, Tsujimoto, S., Umana, G., Vagelli, V., Vagnetti, F., Valentino, M., Vallania, P., Valore, L., van Eldik, C., Vandenbroucke, J., Varner, G. S., Vasileiadis, G., Vassiliev, V., Vazquez Acosta, M., Vecchi, M., Vega, A., Vercellone, S., Veres, P., Vergani, S., Verzi, V., Vettolani, G. P., Viana, A., Vigorito, C., Villanueva, J., Voelk, H., Vollhardt, A., Vorobiov, S., Vrastil, M., Vuillaume, T., Wagner, S. J., Wagner, R., Walter, R., Ward, J. E., Warren, D., Watson, J. J., Werner, F., White, M., White, R., Wierzcholska, A., Wilcox, P., Will, M., Williams, D. A., Wischnewski, R., Wood, M., Yamamoto, T., Yamazaki, R., Yanagita, S., Yang, L., Yoshida, T., Yoshiike, S., Yoshikoshi, T., Zacharias, M., Zaharijas, G., Zampieri, L., Zandanel, F., Zanin, R., Zavrtanik, M., Zavrtanik, D., Zdziarski, A. A., Zech, A., Zechlin, H., Zhdanov, V. I., Ziegler, A., Zorn, J.
    Science with the Cherenkov Telescope Array 2019年  
  • Madsen, K. K., Natalucci, L., Belanger, G., Grant, C. E., Guainazzi, M., Kashyap, V., Marshall, H. L., Miller, E. D., Nevalainen, J., Plucinsky, P. P., Terada, Y.
    2019年1月  
    We summarize the outcome of the 13th meeting of the International Astronomical Consortium for High Energy Calibration (IACHEC), held at Tenuta dei Ciclamini (Avigliano Umbro, Italy) in April 2018. Fifty-one scientists directly involved in the calibration of operational and future high-energy missions gathered during 3.5 days to discuss the current status of the X-ray payload inter-calibration and possible approaches to improve it. This summary consists of reports from the various working groups with topics ranging from the identification and characterization of standard calibration sources, multi-observatory cross-calibration campaigns, appropriate and new statistical techniques, calibration of instruments and characterization of background, and communication and preservation of knowledge and results for the benefit of the astronomical community....
  • Shin-nosuke Ishikawa, Tadayuki Takahashi, Shin Watanabe, Noriyuki Narukage, Satoshi Miyazaki, Tadashi Orita, Shin’ichiro Takeda, Masaharu Nomachi, Iwao Fujishiro, Fumio Hodoshima
    Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 912 191-194 2018年12月  

MISC

 243
  • 小川翔司, 寺田幸功, 田代信, 高橋弘充, 水野恒史, 深沢泰司, 阪本菜月, 信川正順, 宇野伸一郎, 中澤知洋, 大宮悠希, 大熊佳吾, 内山秀樹, 久保田あや, 勝田哲, 塩入匠, 寺島雄一, 志達めぐみ, 新居田祐基, 山内茂雄, 太田直美, 白木天音, 鈴木那梨, 北口貴雄, 山田智史, 坪井陽子, 米山友景, 根本登, 内田悠介, 江口智士, 谷本敦, 善本真梨那, 海老沢研, 渡辺伸, 飯塚亮, 林克洋, 内田和海, 金丸善朗, 星野晶夫, 吉田鉄生, HOLLAND Matt, YAQOOB Tahir, BALUTA Chris, LOEWENSTEIN Michael, LOEWENSTEIN Michael, MILLER Eric
    日本天文学会年会講演予稿集 2024 2024年  
  • 林克洋, 田代信, 田代信, 寺田幸功, 寺田幸功, 高橋弘充, 信川正順, 水野恒史, 宇野伸一郎, 中澤知洋, 内山秀樹, 久保田あや, 寺島雄一, 深澤泰司, 山内茂雄, 太田直美, 北口貴雄, 勝田哲, 坪井陽子, 志達めぐみ, 海老沢研, 内田悠介, 江口智士, 谷本敦, 米山友景, 山田智史, 内田和海, 吉田鉄生, 金丸善朗, 小川翔司, 星野晶夫, 渡辺伸, 飯塚亮, HOLLAND Matt, LOEWENSTEIN Michael, LOEWENSTEIN Michael, MILLER Eric, YAQOOB Tahir, BALUTA Chris, 塩入匠, 阪本菜月, 白木天音, 新居田祐基, 根本登, 大宮悠希, 鈴木那梨, 善本真梨那, 大熊佳吾
    日本物理学会講演概要集(CD-ROM) 79(1) 2024年  
  • 寺田幸功, 寺田幸功, 志達めぐみ, 塩入匠, 新居田祐基, 澤田真理, 小湊隆, 田代信, 田代信, 戸田謙一, 前島弘則, 夏苅権, 高橋弘充, 信川正順, 水野恒史, 宇野伸一郎, 中澤知洋, 内山秀樹, 久保田あや, 寺島雄一, 深沢泰司, 山内茂雄, 太田直美, 北口貴雄, 勝田哲, 坪井陽子, 海老沢研, 内田悠介, 江口智士, 林克洋, 谷本敦, 米山友景, 山田智史, 内田和海, 吉田鉄生, 金丸善朗, 小川翔司, 星野晶夫, 渡辺伸, 飯塚亮, HOLLAND M, LOEWENSTEIN M, LOEWENSTEIN M, MILLER E, YAQOOB T, BALUTA C
    日本物理学会講演概要集(CD-ROM) 79(1) 2024年  
  • 林克洋, 田代信, 田代信, 寺田幸功, 寺田幸功, 高橋弘充, 信川正順, 水野恒史, 宇野伸一郎, 久保田あや, 中澤知洋, 渡辺伸, 飯塚亮, 佐藤理江, 米山友景, 吉田鉄生, BALUTA Chris, 海老沢研, 江口智士, 深澤泰司, 橋口葵, 勝田哲, 北口貴雄, 小高裕和, 大野雅功, 太田直美, 阪間美南, 阪本菜月, 志達めぐみ, 塩入匠, 丹波翼, 谷本敦, 寺島雄一, 坪井陽子, 内田和海, 内田悠介, 内山秀樹, 山田智史, 山内茂雄
    日本天文学会年会講演予稿集 2023 2023年  
  • 山田智史, 田代信, 田代信, 寺田幸功, 寺田幸功, 高橋弘充, 信川正順, 水野恒史, 宇野伸一郎, 久保田あや, 中澤知洋, 渡辺伸, 飯塚亮, 佐藤理江, 林克洋, 米山友景, 吉田鉄生, BALUTA Chris, 海老沢研, 江口智士, 深澤泰司, 橋口葵, 勝田哲, 北口貴雄, 小高裕和, 大野雅功, 太田直美, 阪間美南, 阪本菜月, 志達めぐみ, 塩入匠, 丹波翼, 谷本敦, 寺島雄一, 坪井陽子, 内田和海, 内田悠介, 内山秀樹, 山内茂雄
    日本天文学会年会講演予稿集 2023 2023年  

共同研究・競争的資金等の研究課題

 12