基本情報
- 所属
- 国立研究開発法人宇宙航空研究開発機構 宇宙科学研究所 学際科学研究系 教授 (研究主幹)総合研究大学院大学 物理科学研究科 宇宙科学専攻 教授
- 学位
- 博士(工学)(1992年3月 東京大学)
- 研究者番号
- 50249934
- ORCID ID
https://orcid.org/0000-0002-2845-9636
- J-GLOBAL ID
- 200901018824285220
- researchmap会員ID
- 1000144502
宇宙環境の特性を利用した物質科学研究を通して地球上のみならず宇宙空間における物質の変化を探求しています。具体的には、観測ロケット・国際宇宙ステーションなど宇宙飛翔体による微小重力、遠心機による過重力、強磁場など様々な環境を利用して、凝固・結晶成長の素過程の解明、環境相中の輸送現象の解明と制御、新しい材料プロセスの開発に取り組んでいます。
研究分野
5経歴
14-
2021年6月 - 現在
-
2017年4月 - 現在
-
2014年4月 - 現在
-
2012年5月 - 2019年3月
-
2015年4月 - 2017年9月
学歴
3-
1989年4月 - 1992年3月
-
1987年4月 - 1989年3月
-
1983年4月 - 1987年3月
主要な委員歴
29-
2017年4月 - 現在
-
2015年10月 - 現在
-
2011年7月 - 現在
-
2016年1月 - 2024年3月
-
2019年10月 - 2023年9月
-
2014年12月 - 2015年11月
-
2005年4月 - 2007年3月
受賞
7-
2016年9月
-
2003年10月
-
2000年12月
論文
198-
Defect and Diffusion Forum 439 291-304 2025年2月20日 査読有り
-
ACS Applied Materials and Interfaces 16(35) 46433-46441 2024年9月4日 査読有り最終著者Materials with enhanced electron and reduced phonon transport properties are preferred for thermoelectric applications. The defect engineering process can optimize the interrelated electron and phonon transport properties to enhance thermoelectric performance. As the influence of various crystalline defects on the functional properties of materials is diverse, it is crucial to scale, optimize, and understand them experimentally. With this perspective, crystalline defects in InGaSb ternary alloys were engineered and their influence on the thermoelectric properties was studied experimentally. Crystalline defects such as point defects, dislocations, and compositional segregations were induced in In0.95Ga0.05Sb crystals by the addition of excess constituent elements, In, Ga, or Sb. The addition of excess Ga increased point defects, whereas excess Sb reduced dislocation densities. The thermoelectric figure of merit value (ZT) of In0.95Ga0.05Sb+Ga0.02 was recorded to be 0.87 at 573 K, which is the highest among other reported values of III-V semiconductors. The collective interactions of compositional segregations, point defects, and dislocations with electrons and phonons enhanced the ZT in this study.
-
Journal of Chemical Engineering of Japan 56(1) 2222757 2023年12月31日 査読有り
-
Frontiers in Microbiology 14 1253436 2023年12月 査読有り<jats:p>Planetary protection is a guiding principle aiming to prevent microbial contamination of the solar system by spacecraft (forward contamination) and extraterrestrial contamination of the Earth (backward contamination). Bioburden reduction on spacecraft, including cruise and landing systems, is required to prevent microbial contamination from Earth during space exploration missions. Several sterilization methods are available; however, selecting appropriate methods is essential to eliminate a broad spectrum of microorganisms without damaging spacecraft components during manufacturing and assembly. Here, we compared the effects of different bioburden reduction techniques, including dry heat, UV light, isopropyl alcohol (IPA), hydrogen peroxide (H<jats:sub>2</jats:sub>O<jats:sub>2</jats:sub>), vaporized hydrogen peroxide (VHP), and oxygen and argon plasma on microorganisms with different resistance capacities. These microorganisms included <jats:italic>Bacillus atrophaeus</jats:italic> spores and <jats:italic>Aspergillus niger</jats:italic> spores, <jats:italic>Deinococcus radiodurans</jats:italic>, and <jats:italic>Brevundimonas diminuta</jats:italic>, all important microorganisms for considering planetary protection. <jats:italic>Bacillus atrophaeus</jats:italic> spores showed the highest resistance to dry heat but could be reliably sterilized (i.e., under detection limit) through extended time or increased temperature. <jats:italic>Aspergillus niger</jats:italic> spores and <jats:italic>D. radiodurans</jats:italic> were highly resistant to UV light. Seventy percent of IPA and 7.5% of H<jats:sub>2</jats:sub>O<jats:sub>2</jats:sub> treatments effectively sterilized <jats:italic>D. radiodurans</jats:italic> and <jats:italic>B. diminuta</jats:italic> but showed no immediate bactericidal effect against <jats:italic>B. atrophaeus</jats:italic> spores. IPA immediately sterilized <jats:italic>A. niger</jats:italic> spores, but H<jats:sub>2</jats:sub>O<jats:sub>2</jats:sub> did not. During VHP treatment under reduced pressure, viable <jats:italic>B. atrophaeus</jats:italic> spores and <jats:italic>A. niger</jats:italic> spores were quickly reduced by approximately two log orders. Oxygen plasma sterilized <jats:italic>D. radiodurans</jats:italic> but did not eliminate <jats:italic>B. atrophaeus</jats:italic> spores. In contrast, argon plasma sterilized <jats:italic>B. atrophaeus</jats:italic> but not <jats:italic>D. radiodurans</jats:italic>. Therefore, dry heat could be used for heat-resistant component bioburden reduction, and VHP or plasma for non-heat-resistant components in bulk bioburden reduction. Furthermore, IPA, H<jats:sub>2</jats:sub>O<jats:sub>2</jats:sub>, or UV could be used for additional surface bioburden reduction during assembly and testing. The systemic comparison of sterilization efficiencies under identical experimental conditions in this study provides basic criteria for determining which sterilization techniques should be selected during bioburden reduction for forward planetary protection.</jats:p>
-
Journal of Materials Science: Materials in Electronics 34(19) 1480 2023年7月 査読有り最終著者Thermoelectric materials with optimum carrier concentration of the order of 1019–1020/cm3 are required to obtain a high figure of merit (ZT) value. As undoped In0.8Ga0.2Sb has a lower carrier concentration (~1016/cm3), Te impurity was doped between low (1 × 1018/cm3) and high level (1 x 1021/cm3) to understand the effects of doping on its thermoelectric properties. The undoped and Te-doped In0.8Ga0.2Sb crystals retained cubic zinc blende crystal structure irrespective of heavy doping of Te element. In addition to the optical phonon vibrational modes, acoustic phonon modes were also present when the doping concentration exceeded 1 × 1018/cm3. The carrier concentration in Te-doped In0.8Ga0.2Sb crystals were varied in the range 1018–1020/cm3. Te-doped In0.8Ga0.2Sb with concentration 1 × 1018/cm3 was recorded a higher power factor because of its lower resistivity and higher mobility than other crystals. The ZT of Te-doped In0.8Ga0.2Sb (1 × 1018/cm3) was higher than other samples at 300–450 K. This study revealed that the optimum Te dopant concentration to enhance the ZT value of InxGa1−xSb is 1 x 1018/cm3 for optimizing its properties toward mid-temperature thermoelectric applications.
MISC
281書籍等出版物
12-
The international academy of astronautics(IAA) 2010年 (ISBN: 9782917761090)
講演・口頭発表等
555-
The 60th DAE Solid State Physics Symposium IT-44 2015年12月21日 招待有り
-
The 2015 International Chemical Congress of Pacific Basin Societies (PACIFICHEM 2015) 2015年12月16日
-
ILTS International Symposium on Low Temperature Science 2015年12月1日
-
The 17th Takayanagi Kenjiro memorial symposium 2015年11月17日
-
9th Workshop on Microgravity Sciences in XIAMEN 2015年11月10日
-
2015 International Symposium for Space Biology and Biomedical Engineering, 2015年10月19日 招待有り
-
Inter-Academia 2015 2015年9月29日
-
The Joint Conference of 6th International Symposium on Physical Sciences in Space (ISPS-6) and 10th International Conference on Two-Phase Systems for Space and Ground Applications (ITTW2015) 2015年9月17日
-
The Joint Conference of 6th International Symposium on Physical Sciences in Space (ISPS-6) and 10th International Conference on Two-Phase Systems for Space and Ground Applications (ITTW2015) 2015年9月17日
-
The Joint Conference of 6th International Symposium on Physical Sciences in Space (ISPS-6) and 10th International Conference on Two-Phase Systems for Space and Ground Applications (ITTW2015) 2015年9月17日
-
The Joint Conference of 6th International Symposium on Physical Sciences in Space (ISPS-6) and 10th International Conference on Two-Phase Systems for Space and Ground Applications (ITTW2015) 2015年9月16日
-
The Joint Conference of 6th International Symposium on Physical Sciences in Space (ISPS-6) and 10th International Conference on Two-Phase Systems for Space and Ground Applications (ITTW2015) 2015年9月16日
-
The Joint Conference of 6th International Symposium on Physical Sciences in Space (ISPS-6) and 10th International Conference on Two-Phase Systems for Space and Ground Applications (ITTW2015) 2015年9月16日
-
26th International Conference on Diamond and Carbon Materials 2015年9月9日
-
SRM University - Shizuoka University Joint Symposium 2015年9月3日
-
The 30th International Symposium on Space Technology and Science (30th ISTS) 2015年7月7日
-
The 30th International Symposium on Space Technology and Science (30th ISTS) 2015年7月7日
-
Tongji University, China 2015年3月29日 招待有り
-
第62回応用物理学会春季学術講演会 2015年3月12日
-
第62回応用物理学会春季学術講演会 2015年3月12日
-
3rd International Conference on Nanoscience and Nanotechnology (ICONN 2015) 2015年2月6日 招待有り
-
3rd International Conference on Nanoscience and Nanotechnology (ICONN 2015) 2015年2月5日 招待有り
-
2015 International Symposium toward the Future of Advanced Researches in Shizuoka University - Joint International Workshops on Advanced Nanovision Science / Advanced Green Science / Promotion of Global Young Researchers in Shizuoka University - 2015年1月28日
-
2015 International Symposium toward the Future of Advanced Researches in Shizuoka University - Joint International Workshops on Advanced Nanovision Science / Advanced Green Science / Promotion of Global Young Researchers in Shizuoka University - 2015年1月28日
-
SRM University - Shizuoka University Joint Symposium 2015年1月7日
-
The 2nd China-Japan Workshop on Material Science in Space 2014年12月21日
-
The 2nd China-Japan Workshop on Material Science in Space 2014年12月21日
-
The 2nd China-Japan Workshop on Material Science in Space 2014年12月21日
担当経験のある科目(授業)
4-
2020年1月 - 現在有人宇宙学 (京都大学)
-
宇宙環境利用工学特論 (総合研究大学院大学)
-
航空宇宙材料特論 (芝浦工業大学)
-
C言語 (東京農工大学)
Works(作品等)
1共同研究・競争的資金等の研究課題
36-
日本学術振興会 科学研究費助成事業 基盤研究(A) 2020年4月 - 2025年3月
-
日本学術振興会 科学研究費助成事業 挑戦的研究(萌芽) 2019年6月 - 2022年3月
-
日本学術振興会 科学研究費助成事業 基盤研究(B) 2019年4月 - 2022年3月
-
日本学術振興会 科学研究費助成事業 挑戦的萌芽研究 2016年4月 - 2019年3月
-
日本学術振興会 科学研究費補助金 挑戦的萌芽研究 2016年4月 - 2018年3月
産業財産権
3-
製鋼、金属鋳造・精錬、及び半導体作製技術などの分野において好適に用いることのできる、導電性融液中の拡散係数計測方法及び拡散係数計測装置
-
Two conductive solid materials with their respective different compositions are joined in parallel with a gravity direction thereof, and then, heated and melted under static magnetic field orthogonal to the gravity direction to form two conductive melts with their respective different compositions. Then, the conductive melts are maintained for a predetermined period of time under the static magnetic field, and cooled and solidified.
学術貢献活動
5-
パネル司会・セッションチェア等JSASS (オンライン) 2022年2月26日 - 2022年3月4日