Profile Information
- Affiliation
- Institute of Space and Astronautical Science, Japan Aerospace Exploration AgencyGraduate School of Science Department of Astronomy, The University of Tokyo
- J-GLOBAL ID
- 200901049964309113
- researchmap Member ID
- 5000001980
- External link
Research Interests
5Research Areas
2Research History
1-
Oct, 2017 - Present
Major Papers
152-
Applied Optics, Aug 8, 2024
-
Journal of Astronomical Telescopes, Instruments, and Systems, 9(02), Apr 19, 2023
-
Journal of Astronomical Telescopes, Instruments, and Systems, 9(02), Apr 12, 2023
-
Progress of Theoretical and Experimental Physics, 2023(4), Nov 21, 2022Abstract LiteBIRD, the Lite (Light) satellite for the study of B-mode polarization and Inflation from cosmic background Radiation Detection, is a space mission for primordial cosmology and fundamental physics. The Japan Aerospace Exploration Agency (JAXA) selected LiteBIRD in May 2019 as a strategic large-class (L-class) mission, with an expected launch in the late 2020s using JAXA’s H3 rocket. LiteBIRD is planned to orbit the Sun–Earth Lagrangian point L2, where it will map the cosmic microwave background polarization over the entire sky for three years, with three telescopes in 15 frequency bands between 34 and 448 GHz, to achieve an unprecedented total sensitivity of $2.2\, \mu$K-arcmin, with a typical angular resolution of 0.5○ at 100 GHz. The primary scientific objective of LiteBIRD is to search for the signal from cosmic inflation, either making a discovery or ruling out well-motivated inflationary models. The measurements of LiteBIRD will also provide us with insight into the quantum nature of gravity and other new physics beyond the standard models of particle physics and cosmology. We provide an overview of the LiteBIRD project, including scientific objectives, mission and system requirements, operation concept, spacecraft and payload module design, expected scientific outcomes, potential design extensions, and synergies with other projects.
-
Space Telescopes and Instrumentation 2022: Optical, Infrared, and Millimeter Wave, Aug 27, 2022
-
Space Telescopes and Instrumentation 2022: Optical, Infrared, and Millimeter Wave, Aug 27, 2022
-
SPACE TELESCOPES AND INSTRUMENTATION 2022: OPTICAL, INFRARED, AND MILLIMETER WAVE, 12180, 2022LiteBIRD is a JAXA-led international project that aims to test representative inflationary models by performing an all-sky cosmic microwave background radiation (CMB) polarization survey for 3 years at the Sun-Earth Lagrangian point L2. We aim to launch LiteBIRD in the late 2020s. The payload module (PLM) is mainly composed of the Low-Frequency Telescope (LFT), the Mid-Frequency Telescope and High-Frequency Telescope (MHFT), and a cryo-structure. To conduct the high-precision and high-sensitivity CMB observations, it is required to cool the telescopes down to less than 5 K and the detectors down to 100 mK. The high temperature stability is also an important design factor. It is essential to design and analyze the cryogenic thermal system for PLM. In this study, the heat balance, temperature distribution, and temperature stability of the PLM for the baseline design are evaluated by developing the transient thermal model. The effect of the Joule-Thomson (JT) coolers cold tip temperature variation, the periodical changes in subK Adiabatic Demagnetization Refrigerator (ADR) heat dissipation, and the satellite spin that generates the variable direction of solar flux incident are implemented in the model. The effect of contact thermal conductance in the LFT and the emissivity of the V-groove on the temperature distribution and heat balance are investigated. Based on the thermal analysis, it was confirmed that the PLM baseline design meets the requirement of the temperature and the cooling capability of the 4K-JT cooler. In addition, the temperatures of the V-groove and the LFT 5-K frame are sufficiently stable for the observation. The temperature stability of the Low Frequency Focal Plane (LF-FP) is also discussed in this paper.
-
Proceedings of SPIE - The International Society for Optical Engineering, 11453, 2020© COPYRIGHT SPIE. Downloading of the abstract is permitted for personal use only. LiteBIRD has been selected as JAXA's strategic large mission in the 2020s, to observe the cosmic microwave background (CMB) B-mode polarization over the full sky at large angular scales. The challenges of LiteBIRD are the wide field-of-view (FoV) and broadband capabilities of millimeter-wave polarization measurements, which are derived from the system requirements. The possible paths of stray light increase with a wider FoV and the far sidelobe knowledge of-56 dB is a challenging optical requirement. A crossed-Dragone configuration was chosen for the low frequency telescope (LFT: 34-161 GHz), one of LiteBIRD's onboard telescopes. It has a wide field-of-view (18° x 9°) with an aperture of 400 mm in diameter, corresponding to an angular resolution of about 30 arcminutes around 100 GHz. The focal ratio f/3.0 and the crossing angle of the optical axes of 90a-▪ are chosen after an extensive study of the stray light. The primary and secondary reflectors have rectangular shapes with serrations to reduce the diffraction pattern from the edges of the mirrors. The reflectors and structure are made of aluminum to proportionally contract from warm down to the operating temperature at 5 K. A 1/4 scaled model of the LFT has been developed to validate the wide field-of-view design and to demonstrate the reduced far sidelobes. A polarization modulation unit (PMU), realized with a half-wave plate (HWP) is placed in front of the aperture stop, the entrance pupil of this system. A large focal plane with approximately 1000 AlMn TES detectors and frequency multiplexing SQUID amplifiers is cooled to 100 mK. The lens and sinuous antennas have broadband capability. Performance specifications of the LFT and an outline of the proposed verification plan are presented.
-
Proceedings of SPIE - The International Society for Optical Engineering, 11453, 2020© COPYRIGHT SPIE. Downloading of the abstract is permitted for personal use only. We are developing a 100-GHz band 109-pixel MKID camera for the Nobeyama 45-m telescope. The camera optics contains plano-convex silicon (Si) lenses with 300-and 154-mm diameters located at the 4-K and 1-K stages, and a vacuum window of 320-mm diameter. Antireflective subwavelength structures (SWSs) for the Si lenses and the vacuum window were designed to reduce surface reflection. Cyclo olefin polymer (COP) was chosen as the base material for vacuum window as the dielectric loss is comparable with high-density polyethylene and it is easy to fabricate. Antireflective SWSs optimized for 100-GHz band were simulated using ANSYS HFSS. A one-layer rectangular pillar was designed for a Si lens of 300-mm diameter and a 320-mm diameter COP window to examine the fabrication process in large areas. For 154-mm diameter Si lens, a 1.2-mm depth tapered structure was used to obtain broadband characteristics. These designed structures were fabricated on both sides using a three-Axis numerically-controlled machine. An end mill and a metal-bonded dicing blade were used for cutting the COP and Si, respectively. W-band vector network analyzer was used for S-parameter measurements of the SWS formed flat surface at an ambient temperature. Average surface reflectance of Si lenses and transmittance of the COP window in the 90-110 GHz range were found at approximately 1% and 98%, respectively.
-
IEEE Transactions on Terahertz Science and Technology, 9(6) 598-605, Nov, 2019 Peer-reviewed© 2019 IEEE. Polarization of the cosmic microwave background (CMB) has crucial information on the inflationary universe. To detect these signals, it is necessary to suppress far sidelobes of a telescope, which contaminate the CMB signals with strong foreground radiation, such as the Galactic plane. LiteBIRD is the only funded CMB observation satellite for the 2020s, and the low frequency telescope (LFT; 34-161 GHz) is one of its telescopes. We measured near-field antenna patterns of the LFT using its 1/4-scaled model and examined far sidelobes up to 60° from the peaks. To cover the 20° field of view of the LFT, we investigated the antenna patterns at the edges of the focal plane as well as at the center. The measurement frequencies were 140-220 GHz, which correspond to the lowest bands (35-55 GHz) of the full-scale LFT. The measurements were consistent with the simulated far-sidelobe patterns at least -50 dB level, and showed that far sidelobes for two orthogonal polarization directions are consistent with each other down to -40 dB level. We also measured the cross-polarization patterns, and their peak level was less than -20 dB.
-
Journal of Astronomical Telescopes, Instruments, and Systems, 5(4), Oct 1, 2019 Peer-reviewed© 2019 Society of Photo-Optical Instrumentation Engineers (SPIE). Radiative cooling with thermal isolation shields can provide a reliable cooling system for instruments onboard satellites in orbit. We report the optimization study for the cryogenic architecture of the LiteBIRD satellite using radiative cooling. A trade study that changed the number of thermal shields and shield emissivity were conducted. The heat flow from 300 to 4.5 K, including active cooling by mechanical cryocoolers, was evaluated among the trade designs. We found that the design that consists of low-emissivity four-layer thermal shields is optimum in terms of thermal performance and system design. The optimum design achieved a heat load of 29.9 mW for the 4.5-K cooling stage, whereas the requirement was 30 mW with the assumed cryogenic system.
-
Proceedings of SPIE - The International Society for Optical Engineering, 10698, 2018 Peer-reviewed© COPYRIGHT SPIE. Downloading of the abstract is permitted for personal use only. LiteBIRD is a candidate for JAXA's strategic large mission to observe the cosmic microwave background (CMB) polarization over the full sky at large angular scales. It is planned to be launched in the 2020s with an H3 launch vehicle for three years of observations at a Sun-Earth Lagrangian point (L2). The concept design has been studied by researchers from Japan, U.S., Canada and Europe during the ISAS Phase-A1. Large scale measurements of the CMB B-mode polarization are known as the best probe to detect primordial gravitational waves. The goal of LiteBIRD is to measure the tensor-to-scalar ratio (r) with precision of r < 0:001. A 3-year full sky survey will be carried out with a low frequency (34 - 161 GHz) telescope (LFT) and a high frequency (89 - 448 GHz) telescope (HFT), which achieve a sensitivity of 2.5 μK-arcmin with an angular resolution 30 arcminutes around 100 GHz. The concept design of LiteBIRD system, payload module (PLM), cryo-structure, LFT and verification plan is described in this paper.
-
IEEE Transactions on Applied Superconductivity, 25(3), Jun 1, 2015 Peer-reviewed© 2002-2011 IEEE. We developed SIS mixers for Atacama large millimeter/submillimeter array (ALMA) Band 8 (385-500 GHz) receiver cartridges and evaluated their performance. DC IV curves of the SIS mixers showed small leakage current at the high current density. The current density and quality factor (R-{sg}/R-{n}) of the Band 8 SIS junction were 13 \hbox{kA/cm}{2} and approximately 20, respectively. Double-sideband noise temperature of the 266 SIS mixers was 92.8 K at 4.0 K bath temperature on the average from 385 to 500 GHz with a standard deviation of 7.0%. A couple of sideband-separating (2SB) mixers for dual polarizations were used in the Band 8 receiver cartridge. The 73 receivers have met ALMA specifications of the noise temperature. Single-sideband noise temperature and image rejection ratio of the receivers were 139.5 K and 20.5 dB on the average from 385 to 500 GHz, respectively. These test results of the receivers indicate high quality and uniformity of the 2SB mixers.
Misc.
212-
日本物理学会講演概要集(CD-ROM), 79(2), 2024
-
宇宙科学技術連合講演会講演集(CD-ROM), 67th, 2023
-
宇宙科学技術連合講演会講演集(CD-ROM), 65th, 2021
-
日本物理学会講演概要集(CD-ROM), 76(2), 2021
-
宇宙科学技術連合講演会講演集(CD-ROM), 64th, 2020
-
117(223) 9-14, Oct 4, 2017
-
Meeting Abstracts of the Physical Society of Japan, 72 504-504, 2017<p>宇宙マイクロ波背景放射(CMB)偏光Bモード観測実験GroundBIRDは、地上から広い観測領域で高感度測定を達成し、インフレーションの解明を目指す。GroundBIRDに搭載する超伝導検出器MKIDを駆動するには地磁気の影響を十分に抑制する必要がある。現在、磁気シミュレーションや実測実験により最適な磁気シールドの設定を模索している。ここではその進捗を報告する。</p>
-
Dec, 20164th Workshop of Nano-Electronics For Space Use (December 15, 2016. Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency (JAXA)(ISAS)), Sagamihara, Kanagawa Japan
Presentations
78Teaching Experience
2-
Oct, 2022 - Jan, 2023High energy astrophysics (The University of Tokyo)
-
Jul, 2020 - Aug, 2020Space astronomy (sokendai)
Research Projects
8-
Grants-in-Aid for Scientific Research, Japan Society for the Promotion of Science, Jun, 2023 - Mar, 2027
-
Grants-in-Aid for Scientific Research, Japan Society for the Promotion of Science, Apr, 2023 - Mar, 2027
-
Grants-in-Aid for Scientific Research Grant-in-Aid for Scientific Research (A), Japan Society for the Promotion of Science, Apr, 2017 - Mar, 2021
-
Grants-in-Aid for Scientific Research Grant-in-Aid for Scientific Research on Innovative Areas (Research in a proposed research area), Japan Society for the Promotion of Science, Jun, 2015 - Mar, 2020
-
Grants-in-Aid for Scientific Research Grant-in-Aid for Scientific Research (S), Japan Society for the Promotion of Science, May, 2015 - Mar, 2020
Industrial Property Rights
3Social Activities
1● 指導学生等の数
1-
Fiscal Year2021年度(FY2021)Doctoral program1Master’s program1Internship students9
● 指導学生の表彰・受賞
1-
Student NameHayato TAKAKURAStudent affiliation東京大学AwardB-mode from spaceDate2019-12-5
● 専任大学名
1-
Affiliation (university)東京大学(University of Tokyo)