Curriculum Vitaes

Fumihiko Usui

  (臼井 文彦)

Profile Information

Affiliation
Graduate School of Science, Japan Aerospace Exploration Agency
Degree
修士(学術)(東京大学)
博士(理学)(東京大学)

ORCID ID
 https://orcid.org/0000-0003-2273-0103
J-GLOBAL ID
201601015297652541
researchmap Member ID
7000017299

Awards

 2

Papers

 151
  • Takafumi Kamizuka, Hajime Kawahara, Ryou Ohsawa, Hirokazu Kataza, Daisuke Kawata, Yoshiyuki Yamada, Teruyuki Hirano, Kohei Miyakawa, Masataka Aizawa, Masashi Omiya, Taihei Yano, Ryouhei Kano, Takehiko Wada, Wolfgang Loeffler, Michael Biermann, Pau Ramos, Naoki Isobe, Fumihiko Usui, Kohei Hattori, Satoshi Yoshikawa, Takayuki Tatekawa, Hideyuki Izumiura, Akihiko Fukui, Makoto Miyoshi, Daisuke Tatsumi, Naoteru Gouda
    Proceedings of SPIE, 13099 93-93, Aug 23, 2024  
  • Hirokazu Kataza, Ryouhei Kano, Naoteru Gouda, Masayuki Hirabayashi, Naoki Isobe, Takafumi Kamizuka, Shingo Kashima, Hajime Kawahara, Daisuke Kawata, Naoki Kohara, Iona Kondo, Ichiro Mase, Kohei Miyakawa, Ryou Ohsawa, Masanobu Ozaki, Risa Shimizu, Yoshinori Suematsu, Shotaro Tada, Toshihiro Tsuzuki, Fumihiro Uraguchi, Fumihiko Usui, Shin Utsunomiya, Takehiko Wada, Yoshiyuki Yamada, Taihei Yano
    Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 9-9, Aug 23, 2024  
  • Daisuke Kawata, Hajime Kawahara, Naoteru Gouda, Nathan J Secrest, Ryouhei Kano, Hirokazu Kataza, Naoki Isobe, Ryou Ohsawa, Fumihiko Usui, Yoshiyuki Yamada, Alister W Graham, Alex R Pettitt, Hideki Asada, Junichi Baba, Kenji Bekki, Bryan N Dorland, Michiko Fujii, Akihiko Fukui, Kohei Hattori, Teruyuki Hirano, Takafumi Kamizuka, Shingo Kashima, Norita Kawanaka, Yui Kawashima, Sergei A Klioner, Takanori Kodama, Naoki Koshimoto, Takayuki Kotani, Masayuki Kuzuhara, Stephen E Levine, Steven R Majewski, Kento Masuda, Noriyuki Matsunaga, Kohei Miyakawa, Makoko Miyoshi, Kumiko Morihana, Ryoichi Nishi, Yuta Notsu, Masashi Omiya, Jason Sanders, Ataru Tanikawa, Masahiro Tsujimoto, Taihei Yano, Masataka Aizawa, Ko Arimatsu, Michael Biermann, Celine Boehm, Masashi Chiba, Victor P Debattista, Ortwin Gerhard, Masayuki Hirabayashi, David Hobbs, Bungo Ikenoue, Hideyuki Izumiura, Carme Jordi, Naoki Kohara, Wolfgang Löffler, Xavier Luri, Ichiro Mase, Andrea Miglio, Kazuhisa Mitsuda, Trent Newswander, Shogo Nishiyama, Yoshiyuki Obuchi, Takafumi Ootsubo, Masami Ouchi, Masanobu Ozaki, Michael Perryman, Timo Prusti, Pau Ramos, Justin I Read, R Michael Rich, Ralph Schönrich, Minori Shikauchi, Risa Shimizu, Yoshinori Suematsu, Shotaro Tada, Aoi Takahashi, Takayuki Tatekawa, Daisuke Tatsumi, Takuji Tsujimoto, Toshihiro Tsuzuki, Seitaro Urakawa, Fumihiro Uraguchi, Shin Utsunomiya, Vincent Van Eylen, Floor van Leeuwen, Takehiko Wada, Nicholas A Walton
    Publications of the Astronomical Society of Japan, Apr 10, 2024  
    Abstract The Japan Astrometry Satellite Mission for INfrared Exploration (JASMINE) is a planned M-class science space mission by the Institute of Space and Astronautical Science, the Japan Aerospace Exploration Agency. JASMINE has two main science goals. One is Galactic archaeology with a Galactic Center survey, which aims to reveal the Milky Way’s central core structure and formation history from Gaia-level (∼25 ${\mu} $as) astrometry in the near-infrared (NIR) Hw band (1.0–1.6 ${\mu} $m). The other is an exoplanet survey, which aims to discover transiting Earth-like exoplanets in the habitable zone from NIR time-series photometry of M dwarfs when the Galactic Center is not accessible. We introduce the mission, review many science objectives, and present the instrument concept. JASMINE will be the first dedicated NIR astrometry space mission and provide precise astrometric information on the stars in the Galactic Center, taking advantage of the significantly lower extinction in the NIR. The precise astrometry is obtained by taking many short-exposure images. Hence, the JASMINE Galactic Center survey data will be valuable for studies of exoplanet transits, asteroseismology, variable stars, and microlensing studies, including discovery of (intermediate-mass) black holes. We highlight a swath of such potential science, and also describe synergies with other missions.
  • Naoki Isobe, Shingo Kashima, Yoshinori Suematsu, Naoteru Gouda, Ryohei Kano, Hirokazu Kataza, Hajime Kawahara, Naoki Kohara, Iona Kondo, Ichiro Mase, Ryou Ohsawa, Toshihiro Tsuzuki, Fumihiko Usui, Shin Utsunomiya, Takehiko Wada, Yoshiyuki Yamada, Taihei Yano, Aoi Takahashi, Tomoya Hattori, Koichi Takeda, Yukina Arima
    Proceedings of SPIE - The International Society for Optical Engineering, 13092, 2024  
    Structural, Thermal and Optical Performance (STOP) analysis is performed to investigate the stability of the telescope to be onboard the Japan Astrometry Satellite Mission for INfrared Exploration (JASMINE). In order to perform one of the prime science objectives, high-precision astrometric observations in the wavelength range of 1.0–1.6 µm toward the Galactic center to reveal its central core structure and formation history, the JASMINE telescope is requested to be highly stable with an orbital change in the image distortion pattern being less than a few 10 µas after low-order correction. The JASMINE telescope tried to satisfy this requirement by adopting two design concepts. Firstly, the mirror and their support structures are made of extremely low coefficient-of-thermal-expansion materials. Secondly, their temperatures are highly stabilized with an orbital variation of less the 0.1 ◦C by the unique thermal control idea. Through the preliminary STOP analysis, the structural and thermal structural feasibility of the JASMINE telescope is considered. By combining the results of the structural and thermal design, its thermal deformation is estimated. The optical performance of the JASMINE telescope after the thermal deformation is numerically evaluated. It is found that the thermal displacement of the mirrors in the current structural thermal design produces a slightly large focus-length change. As far as the focus adjustment is adequately applied, the orbital variation of the image distortion pattern is suggested to become acceptable after the low-order correction.
  • K. Arimatsu, K. Tsumura, F. Usui, J. Watanabe
    Astronomy & Astrophysics, Aug 23, 2023  

Misc.

 133

Presentations

 28

Teaching Experience

 1

Research Projects

 7