研究者業績

小橋 昌司

コバシ ショウジ  (Syoji Kobashi)

基本情報

所属
兵庫県立大学 工学研究科 教授 (研究所長)
学位
博士(工学)(姫路工業大学)

研究者番号
00332966
ORCID ID
 https://orcid.org/0000-0003-3659-4114
J-GLOBAL ID
200901031674454407
researchmap会員ID
6000003807

外部リンク

論文

 312
  • Kenta Takatsuji, Yoshikazu Kida, Kenta Sasaki, Daisuke Fujita, Yusuke Kobayashi, Tsuyoshi Sukenari, Yoshihiro Kotoura, Masataka Minami, Syoji Kobashi, Kenji Takahashi
    The Journal of bone and joint surgery. American volume 106(23) 2196-2204 2024年12月4日  査読有り
    BACKGROUND: Ultrasonography is used to diagnose osteochondritis dissecans (OCD) of the humerus; however, its reliability depends on the technical proficiency of the examiner. Recently, computer-aided diagnosis (CAD) using deep learning has been applied in the field of medical science, and high diagnostic accuracy has been reported. We aimed to develop a deep learning-based CAD system for OCD detection on ultrasound images and to evaluate the accuracy of OCD detection using the CAD system. METHODS: The CAD process comprises 2 steps: humeral capitellum detection using an object-detection algorithm and OCD classification using an image classification network. Four-directional ultrasound images of the elbow of the throwing arm of 196 baseball players (mean age, 11.2 years), including 104 players with normal findings and 92 with OCD, were used for training and validation. An external dataset of 20 baseball players (10 with normal findings and 10 with OCD) was used to evaluate the accuracy of the CAD system. A confusion matrix and the area under the receiver operating characteristic curve (AUC) were used to evaluate the system. RESULTS: Clinical evaluation using the external dataset resulted in high AUCs in all 4 directions: 0.969 for the anterior long axis, 0.966 for the anterior short axis, 0.996 for the posterior long axis, and 0.993 for the posterior short axis. The accuracy of OCD detection thus exceeded 0.9 in all 4 directions. CONCLUSIONS: We propose a deep learning-based CAD system to detect OCD lesions on ultrasound images. The CAD system achieved high accuracy in all 4 directions of the elbow. This CAD system with a deep learning model may be useful for OCD screening during medical checkups to reduce the probability of missing an OCD lesion. LEVEL OF EVIDENCE: Diagnostic Level II. See Instructions for Authors for a complete description of levels of evidence.
  • Yukihiro Imaoka, Nice Ren, Soshiro Ogata, Hirotoshi Imamura, Yasuyuki Kaku, Koichi Arimura, Shogo Watanabe, Eri Kiyoshige, Kunihiro Nishimura, Syoji Kobashi, Masafumi Ihara, Kenji Kamiyama, Masafumi Morimoto, Tsuyoshi Ohta, Hidenori Endo, Yuji Matsumaru, Nobuyuki Sakai, Takanari Kitazono, Shigeru Fujimoto, Kuniaki Ogasawara, Koji Iihara
    Annals of clinical and translational neurology 11(12) 3103-3114 2024年12月  査読有り
    OBJECTIVE: We evaluated the effect of CHA2DS2-VASc score and prior use of oral anticoagulants (OACs) on endovascular treatment (EVT) in patients with acute ischemic stroke and atrial fibrillation (AF). METHODS: Patients with AF who received EVT in 353 centers in Japan (2018-2020) were included. The outcomes were symptomatic intracerebral hemorrhage (sICH), in-hospital mortality, functional independence, and successful and complete reperfusion. The effects of CHA2DS2-VASc score, its components, and prior use of OACs were assessed via a multiple logistic regression model. RESULTS: Of the 6984 patients, 780 (11.2%) used warfarin and 1168 (16.7%) used direct oral anticoagulants (DOACs) before EVT. Based on the CHA2DS2-VASc score, 6046 (86.6%) presented a high risk (≥2 for males and ≥3 for females) while 938 (13.4%) had intermediate to low risks. Higher CHA2DS2-VASc scores were associated with increased sICH, in-hospital mortality, and decreased functional independence, regardless of prior OACs. For patients with a high-risk category, prior DOACs increased the odds of successful and complete reperfusion (adjusted odds ratio [95% confidence interval (CI)], 1.27 [1.00-1.61] and 1.30 [1.10-1.53]). For those with integrated intermediate to low risks, neither prior warfarin nor DOAC affected the outcomes. Regardless of total CHA2DS2-VASc scores, patients with congestive heart failure or left ventricular dysfunction, hypertension, age >75 years, or female benefited similarly from prior DOAC use. INTERPRETATION: Prior DOAC use for patients with high- and selected intermediate-risk CHA2DS2-VASc scores increased prevalence of successful and complete reperfusion. These findings may provide supplemental evidence to introduce preventive DOAC for patients with AF.
  • Shuya Ishida, Kento Morita, Kinta Hatakeyama, Nice Ren, Shogo Watanabe, Syoji Kobashi, Koji Iihara, Tetsushi Wakabayashi
    International journal of computer assisted radiology and surgery 2024年11月9日  査読有り
    PURPOSE: Carotid endarterectomy (CEA) is a surgical treatment for carotid artery stenosis. After CEA, some patients experience cardiovascular events (myocardial infarction, stroke, etc.); however, the prognostic factor has yet to be revealed. Therefore, this study explores the predictive factors in pathological images and predicts cardiovascular events within one year after CEA using pathological images of carotid plaques and patients' clinical data. METHOD: This paper proposes a two-step method to predict the prognosis of CEA patients. The proposed method first computes the pathological risk score using an anomaly detection model trained using pathological images of patients without cardiovascular events. By concatenating the obtained image-based risk score with a patient's clinical data, a statistical machine learning-based classifier predicts the patient's prognosis. RESULTS: We evaluate the proposed method on a dataset containing 120 patients without cardiovascular events and 21 patients with events. The combination of autoencoder as the anomaly detection model and XGBoost as the classification model obtained the best results: area under the receiver operating characteristic curve, accuracy, sensitivity, specificity, and F1-score were 81.9%, 84.1%, 79.1%, 86.3%, and 76.6%, respectively. These values were superior to those obtained using pathological images or clinical data alone. CONCLUSION: We showed the feasibility of predicting CEA patient's long-term prognosis using pathological images and clinical data. Our results revealed some histopathological features related to cardiovascular events: plaque hemorrhage (thrombus), lymphocytic infiltration, and hemosiderin deposition, which will contribute to developing preventive treatment methods for plaque development and progression.
  • Kenta Sasaki, Daisuke Fujita, Kenta Takatsuji, Yoshihiro Kotoura, Masataka Minami, Yusuke Kobayashi, Tsuyoshi Sukenari, Yoshikazu Kida, Kenji Takahashi, Syoji Kobashi
    International journal of computer assisted radiology and surgery 19(11) 2143-2152 2024年11月  査読有り最終著者責任著者
    PURPOSE: Osteochondritis dissecans (OCD) of the humeral capitellum is a common cause of elbow disorders, particularly among young throwing athletes. Conservative treatment is the preferred treatment for managing OCD, and early intervention significantly influences the possibility of complete disease resolution. The purpose of this study is to develop a deep learning-based classification model in ultrasound images for computer-aided diagnosis. METHODS: This paper proposes a deep learning-based OCD classification method in ultrasound images. The proposed method first detects the humeral capitellum detection using YOLO and then estimates the OCD probability of the detected region probability using VGG16. We hypothesis that the performance will be improved by eliminating unnecessary regions. To validate the performance of the proposed method, it was applied to 158 subjects (OCD: 67, Normal: 91) using five-fold-cross-validation. RESULTS: The study demonstrated that the humeral capitellum detection achieved a mean average precision (mAP) of over 0.95, while OCD probability estimation achieved an average accuracy of 0.890, precision of 0.888, recall of 0.927, F1 score of 0.894, and an area under the curve (AUC) of 0.962. On the other hand, when the classification model was constructed for the entire image, accuracy, precision, recall, F1 score, and AUC were 0.806, 0.806, 0.932, 0.843, and 0.928, respectively. The findings suggest the high-performance potential of the proposed model for OCD classification in ultrasonic images. CONCLUSION: This paper introduces a deep learning-based OCD classification method. The experimental results emphasize the effectiveness of focusing on the humeral capitellum for OCD classification in ultrasound images. Future work should involve evaluating the effectiveness of employing the proposed method by physicians during medical check-ups for OCD.
  • Md. Anas Ali, Daisuke Fujita, Syoji Kobashi
    Proceedings ofInternational Conference on Machine Learning and Cybernetics 2024年9月  査読有り最終著者責任著者

MISC

 281

講演・口頭発表等

 226

担当経験のある科目(授業)

 17

共同研究・競争的資金等の研究課題

 25

学術貢献活動

 5

社会貢献活動

 2

メディア報道

 11