Curriculum Vitaes

Hiroyuki Ogawa

  (小川 博之)

Profile Information

Affiliation
Professor, Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency
Degree
Doctor of Engineering(Mar, 1996, Nagoya University)

Contact information
ogawa.hiroyukijaxa.jp
J-GLOBAL ID
200901051344540154
researchmap Member ID
1000253790

External link

Research on advanced thermal control systems for future scientific satellites
 Based on the experience of scientific satellite projects, we analyze the current issues and future plans, and conduct research and development of advanced thermal control systems for future scientific satellites. The results of our research have been fed back to the thermal control system on board the X-ray astronomy satellite Hitomi, and are being considered for application to the next scientific satellite project.

Thermal control for scientific satellite projects
 In challenging projects that actively employ thermo-fluid devices, such as the Japan-Europe Mercury mission BepiColombo, which will be exposed to extreme environments that have never been experienced before, and the large X-ray telescope satellite Hitomi, new satellite development methods that have never been experienced before are required. In such challenging projects that actively employ thermo-fluid devices, conventional satellite development methods and their extensions cannot be applied. We are contributing to the success of the project from the viewpoint of heat by leading the new research and development with our academic knowledge of thermo-fluid mechanics, such as development of new materials that can withstand extreme environments, construction of thermal design and analysis methods, development of test facilities, and development of verification methods.

Application of thermo-fluid mechanics
 We are contributing to various space science project activities based on our academic knowledge of thermo-fluid and its related fields. In the research of reusable rockets, we are contributing to the solution of problems related to thermo-fluid such as engine flow, cryogenic tanks, and external flow. In the area of satellite propulsion, we have contributed to the improvement of thruster analysis technology by studying the chemical reaction flow inside hydrazine thrusters, and in the area of rocket propulsion, we have developed a method for analyzing the internal flow of solid rockets and contributed to the investigation of the causes of malfunctions in M-V rockets and SRB-A rockets. In the rocket propulsion system, he developed an internal flow analysis method for solid rockets and contributed to investigating the cause of the failure of the M-V rocket and SRB-A. He has also contributed to rocket research by working on rocket flight safety and radio frequency interference problems with rocket exhaust plumes. I have also conducted theoretical research on shock wave interference in high-speed electromagnetic fluids and propulsion systems using electromagnetic fluids.


Awards

 1

Papers

 91
  • Takeshi Yokouchi, Xinyu Chang, Kimihide Odagiri, Hiroyuki Ogawa, Hosei Nagano, Hiroki Nagai
    International Journal of Heat and Mass Transfer, 231, Oct, 2024  
    This paper investigated the effect of filling pressure on the operating characteristics of a gravity-assisted cryogenic loop heat pipe(CLHP) for use in gravity environments such as terrestrial and lunar environments. The CLHP wick is made of sintered stainless-steel fibers with a pore radius of 1.56 μm and designed with a heat transport distance of 2.05 m. The experiments were conducted under gravity-assisted conditions (the condenser was placed 0.1 m higher than the evaporator). Notably, the filling pressure originated from the assumed vapor-liquid distribution in the CLHP under steady-state conditions. The filling pressure was varied from 2.9 MPa to 3.4 MPa in 0.1 MPa increments for six different conditions. Specifically, (1) 2.9 MPa and (2) 3.0 MPa are conditions where the heat leakage due to the vapor phase in the evaporator core is large, while (3) 3.1 MPa and (4) 3.2 MPa are conditions where there is no vapor phase in the evaporator core and the surplus vapor phase escapes to the CC. In general, this condition is considered to be the optimum amount of working fluid for room-temperature LHPs when designing. (5) 3.3 MPa and (6) 3.4 MPa are overfilling conditions that cause the CC to be filled with liquid. The results revealed that the higher the filling pressure, the more obvious the variation in operating temperature caused by the transition of drive modes. The maximum heat transfer capability reached 25 W in cases (1)-(4). In cases (5) and (6), the heat transfer capabilities increased to 30 W, although the operating temperature was higher. Furthermore, the hysteresis effect under different filling pressure conditions was newly confirmed. The power cycling experiments demonstrated that hysteresis in the operating temperature occurred at high heat loads and showed a similar trend to the room-temperature LHP.
  • Kimihide Odagiri, Xinyu Chang, Hiroki Nagai, Hiroyuki Ogawa
    Applied Thermal Engineering, 123878-123878, Jul, 2024  
  • Xinyu Chang, Takeshi Yokouchi, Kimihide Odagiri, Hiroyuki Ogawa, Hosei Nagano, Hiroki Nagai
    International Journal of Heat and Mass Transfer, 221 125037-125037, Apr, 2024  
  • Kimihide Odagiri, Xinyu Chang, Hiroki Nagai, Hiroyuki Ogawa
    Applied Thermal Engineering, 121109-121109, Jul, 2023  
  • Hideyuki Fuke, Shun Okazaki, Akiko Kawachi, Manami Kondo, Hiroyuki Ogawa, Noboru Yamada
    Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1049 168102-168102, Apr, 2023  

Misc.

 380
  • 清水, 雄輝, 入江, 優花, 永井, 大洋, 鈴木, 俊介, 佐々木, 文哉, 和田, 拓也, 吉田, 篤正, 福家, 英之, 水越, 彗太, 小川, 博之, 岡崎, 峻, 高橋, 俊, 山谷, 昌大, 吉田, 哲也, 小財, 正義, 加藤, 千尋, 宗像, 一起, 平井, 克樹, 河内, 明子, 川本, 裕樹, 木間, 快, 奈良, 祥太朗, 清水, 望, HAILEY, C.J, BOEZIO, M.
    大気球シンポジウム: 2023年度, Oct 1, 2023  
    レポート番号: isas23-sbs-034
  • 小田切公秀, 小川博之, 小栗秀悟, 篠崎慶亮, 杉本諒, 鈴木仁研, 関本裕太郎, 堂谷忠靖, 楢崎勝弘, 松田フレドリック, 吉原圭介, 綿貫一也, 一色雅仁, 吉田誠至, PROUVE Thomas, DUVAL Jean-Marc, THOMPSON Keith L.
    宇宙科学技術連合講演会講演集(CD-ROM), 67th, 2023  
  • 秋月祐樹, 澤田健一郎, 金城富宏, 小川博之, 西山和孝, 豊田博之, 今村裕志, 高島健
    宇宙科学技術連合講演会講演集(CD-ROM), 67th, 2023  
  • 小田切公秀, 永井大樹, 小川博之, 常新雨, 横内岳史
    東北大学流体科学研究所共同利用・共同研究拠点流体科学国際研究教育拠点活動報告書(CD-ROM), 2022 141-143, 2023  
  • 清水, 雄輝, 入江, 優花, 橋本, 航征, 鈴木, 俊介, 和田, 拓也, 吉田, 篤正, 福家, 英之, 水越, 彗太, 小川, 博之, 岡崎, 峻, 白鳥, 弘英, 徳永, 翔, 山谷, 昌大, 吉田, 哲也, 小財, 正義, 加藤, 千尋, 宗像, 一起, 新垣, 翔太, 平井, 克樹, 河内, 明子, 川俣, 柊介, 川本, 裕樹, 奈良, 祥太朗, 高橋, 俊, HAILEY, Charles, BOEZIO, Mirko, SHIMIZU, Yuki, IRIE, Yuka, SUZUKI, Shunsuke, WADA, Takuya, YOSHIDA, Atsumasa, FUKE, Hideyuki, MIZUKOSHI, keita, OGAWA, Hiroyuki, OKAZAKI, Shun, SHIRATORI, Hirohide, TOKUNAGA, Kakeru, YAMATANI, Masahiro, YOSHIDA, Tetsuya, KOZAI, Masayoshi, KATO, Chihiro, MUNAKATA, Kazuoki, KAWACHI, Akiko, KAWAMATA, Syusuke, KAWAMOTO, Yuki, NARA, Shotaro, TAKAHASHI, Shun
    大気球シンポジウム: 2022年度 = Balloon Symposium: 2022, Nov, 2022  
    大気球シンポジウム 2022年度(2022年11月7-8日. ハイブリッド開催(JAXA相模原キャンパス& オンライン)) Balloon Symposium 2022 (November 7-8, 2022. Hybrid(in-person & online) Conference (Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency (JAXA)(ISAS)), Sagamihara, Kanagawa Japan 著者人数: 26名 資料番号: SA6000177012 レポート番号: isas22-sbs-012
  • Shugo Oguri, Tadayasu Dotani, Masahito Isshiki, Shota Iwabuchi, Tooru Kaga, Frederick T. Matsuda, Yasuyuki Miyazaki, Baptiste Mot, Ryo Nagata, Katsuhiro Narasaki, Hiroyuki Ogawa, Toshiaki Okudaira, Kimihide Odagiri, Thomas Prouve, Gilles Roudil, Yasutaka Satoh, Yutaro Sekimoto, Toyoaki Suzuki, Kazuya Watanuki, Seiji Yoshida, Keisuke Yoshihara
    Space Telescopes and Instrumentation 2022: Optical, Infrared, and Millimeter Wave, Aug 27, 2022  
  • Hirata, Masaru, Odagiri, Kimihide, Ogawa, Hiroyuki
    33rd International Symposium on Space Technology and Science, Mar, 2022  
  • Fuke, Hideyuki, Okazaki, Shun, Ogawa, Hiroyuki, Saijo, Masaru, Tokunaga, Sho
    33rd International Symposium on Space Technology and Science, 1 n/a, Mar, 2022  
    This study developed a novel thermal control system to cool detectors of the General AntiParticle Spectrometer (GAPS) before its flights. GAPS is a balloon-borne cosmic-ray observation experiment. In its payload, GAPS contains over 1000 silicon detectors that must be cooled below −40℃. All detectors are thermally coupled to a unique heat-pipe system (HPS) that transfers heat from the detectors to a radiator. The radiator is designed to be cooled below −50℃ during the flight by exposure to space. The pre-flight state of the detectors is checked on the ground at 1 atm and ambient room temperature, but the radiator cannot be similarly cooled. The authors have developed a ground cooling system (GCS) to chill the detectors for ground testing. The GCS consists of a cold plate, a chiller, and insulating foam. The cold plate is designed to be attached to the radiator and cooled by a coolant pumped by the chiller. The payload configuration, including the HPS, can be the same as that of the flight. The GCS design was validated by thermal tests using a scale model. The GCS design is simple and provides a practical guideline, including a simple estimation of appropriate thermal insulation thickness, which can be easily adapted to other applications.
  • 小田切 公秀, 西城 大, 篠崎 慶亮, 杉本 諒, 小川 博之, マツダ フレデリック
    宇宙科学シンポジウム, Feb, 2022  
  • Kimihide Odagiri, Masaru Saijo, Keisuke Shinozaki, Frederick Matsuda, Shugo Oguri, Toyoaki Suzuki, Hiroyuki Ogawa, Yutaro Sekimoto, Tadayasu Dotani, Kazuya Watanuki, Ryo Sugimoto, Keisuke Yoshihara, Katsuhiro Narasaki, Masahito Isshiki, Seiji Yoshida, Thomas Prouve, Jean-Marc Duval, Keith L. Thompson
    SPACE TELESCOPES AND INSTRUMENTATION 2022: OPTICAL, INFRARED, AND MILLIMETER WAVE, 12180, 2022  
    LiteBIRD is a JAXA-led international project that aims to test representative inflationary models by performing an all-sky cosmic microwave background radiation (CMB) polarization survey for 3 years at the Sun-Earth Lagrangian point L2. We aim to launch LiteBIRD in the late 2020s. The payload module (PLM) is mainly composed of the Low-Frequency Telescope (LFT), the Mid-Frequency Telescope and High-Frequency Telescope (MHFT), and a cryo-structure. To conduct the high-precision and high-sensitivity CMB observations, it is required to cool the telescopes down to less than 5 K and the detectors down to 100 mK. The high temperature stability is also an important design factor. It is essential to design and analyze the cryogenic thermal system for PLM. In this study, the heat balance, temperature distribution, and temperature stability of the PLM for the baseline design are evaluated by developing the transient thermal model. The effect of the Joule-Thomson (JT) coolers cold tip temperature variation, the periodical changes in subK Adiabatic Demagnetization Refrigerator (ADR) heat dissipation, and the satellite spin that generates the variable direction of solar flux incident are implemented in the model. The effect of contact thermal conductance in the LFT and the emissivity of the V-groove on the temperature distribution and heat balance are investigated. Based on the thermal analysis, it was confirmed that the PLM baseline design meets the requirement of the temperature and the cooling capability of the 4K-JT cooler. In addition, the temperatures of the V-groove and the LFT 5-K frame are sufficiently stable for the observation. The temperature stability of the Low Frequency Focal Plane (LF-FP) is also discussed in this paper.
  • 小田切 公秀, 西城 大, 秋月 祐樹, 澤田 健一郎, 金城 富宏, 篠崎 慶亮, 長野 方星, 永井 大樹, 小川 博之
    宇宙科学シンポジウム, Jan, 2022  
  • 村上 豪, 小川 博之
    宇宙科学シンポジウム, Jan, 2022  
  • マツダ フレデリック, 小栗 秀吾, 小川 博之, 奥平 俊暁, 小田切 公秀, 加賀 亨
    宇宙科学シンポジウム, Jan, 2022  
  • 小栗 秀吾, 岩渕 頌太, 小川 博之, 奥平 俊暁, 小田切 公秀, 加賀 亨
    宇宙科学シンポジウム, Jan, 2022  
  • 小木曽 望, 後藤 健, 土居 明広, 小川 博之, 河野 太郎, 馬場 満久
    宇宙科学シンポジウム, Jan, 2022  
  • 前川 諒弥, 秋月 祐樹, 長野 方星, 小川 博之
    宇宙航行の力学シンポジウム, Dec, 2021  
  • 澤田 健一郎, 小川 博之
    宇宙航行の力学シンポジウム, Dec, 2021  
  • 横内 岳史, 小田切 公秀, 永井 大樹, 小川 博之
    宇宙航行の力学シンポジウム, Dec, 2021  
  • 小田切 公秀, 小川 博之
    宇宙航行の力学シンポジウム, Dec, 2021  
  • 秋月 祐樹, 小田切 公秀, 小川 博之
    宇宙航行の力学シンポジウム, Dec, 2021  
  • 西城 大, 小田切 公秀, 澤田 健一郎, 金城 富宏, 秋月 祐樹, 篠崎 慶亮, 小川 博之
    宇宙航行の力学シンポジウム, Dec, 2021  
  • Hirata, Masaru, Ogawa, Hiroyuki, Odagiri, Kimihide
    18th International Conference on Fluid Dynamics, Oct, 2021  
  • Odagiri, Kimihide, Saijyo, Masaru, Sawada, Kenichiro, Kinjo, Tomihiro, Akizuki Yuki, Shinozaki, Keisuke, Ogawa, Hiroyuki
    18th International Conference on Fluid Dynamics, Oct, 2021  
  • 秋月 祐樹, 澤田 健一郎, 戸部 裕史, 小川 博之
    熱工学コンファレンス, Oct, 2021  
  • Chang, Xinyu, Odagiri, Kimihide, Ogawa, Hiroyuki
    50th International Conference on Environmental Systems, Jul, 2021  
  • Saijo, Masaru, Nakagawa, Takao, Shinozaki, Keisuke, Sawada, Kenichiro, Ogawa, Hiroyuki
    50th International Conference on Environmental Systems, Jul, 2021  
  • 常 新雨, 小田切 公秀, 永井 大樹, 小川 博之
    第58回日本伝熱シンポジウム, May, 2021  
  • 平田 大, 小田切 公秀, 小川 博之
    第58回日本伝熱シンポジウム, May, 2021  
  • 平田 大, 小川 博之
    日本航空宇宙学会北部支部2021年講演会ならびに第2回再使用型宇宙輸送系シンポジウム, Mar, 2021  
  • 前川諒弥, 長野方星, 上野藍, 秋月祐樹, 小川博之
    宇宙科学技術連合講演会講演集(CD-ROM), 65th, 2021  
  • 平田大, 小田切公秀, 小川博之
    宇宙科学技術連合講演会講演集(CD-ROM), 65th, 2021  
  • 秋月祐樹, 澤田健一郎, 金城富宏, 小川博之, 豊田裕之, 西山和孝, 今村裕志, 高島健
    宇宙科学技術連合講演会講演集(CD-ROM), 65th, 2021  
  • 小田切公秀, 西城大, 篠崎慶亮, 杉本諒, 小川博之, 松田フレドリック, 小栗秀悟, 関本裕太郎, 堂谷忠靖, 一色雅仁, 吉田誠至
    宇宙科学技術連合講演会講演集(CD-ROM), 65th, 2021  
  • 西城大, 岡崎峻, 小財正義, 河内明子, 小川博之, 福家英之
    宇宙科学技術連合講演会講演集(CD-ROM), 65th, 2021  
  • 安藤麻紀子, 北本和也, 東谷千比呂, 松本純, 篠崎慶亮, 西城大, 水谷忠均, 小川博之, 金田英宏, 中川貴雄
    宇宙科学技術連合講演会講演集(CD-ROM), 65th, 2021  
  • Masashi Hazumi, Peter A. Ade, Alexandre Adler, Erwan Allys, Kam Arnold, Didier Auguste, Jonathan Aumont, Ragnhild Aurlien, Jason Austermann, Carlo Baccigalupi, Anthony J. Banday, R. Banjeri, Rita B. Barreiro, Soumen Basak, Jim Beall, Dominic Beck, Shawn Beckman, Juan Bermejo, Paolo de Bernardis, Marco Bersanelli, Julien Bonis, Julian Borrill, Francois Boulanger, Sophie Bounissou, Maksym Brilenkov, Michael Brown, Martin Bucher, Erminia Calabrese, Paolo Campeti, Alessandro Carones, Francisco J. Casas, Anthony Challinor, Victor Chan, Kolen Cheung, Yuji Chinone, Jean F. Cliche, Loris Colombo, Fabio Columbro, Javier Cubas, Ari Cukierman, David Curtis, Giuseppe D'Alessandro, Nadia Dachlythra, Marco De Petris, Clive Dickinson, Patricia Diego-Palazuelos, Matt Dobbs, Tadayasu Dotani, Lionel Duband, Shannon Duff, Jean M. Duval, Ken Ebisawa, Tucker Elleflot, Hans K. Eriksen, Josquin Errard, Thomas Essinger-Hileman, Fabio Finelli, Raphael Flauger, Cristian Franceschet, Unni Fuskeland, Mathew Galloway, Ken Ganga, Jian R. Gao, Ricardo Genova-Santos, Martina Gerbino, Massimo Gervasi, Tommaso Ghigna, Eirik Gjerlw, Marcin L. Gradziel, Julien Grain, Frank Grupp, Alessandro Gruppuso, Jon E. Gudmundsson, Tijmen de Haan, Nils W. Halverson, Peter Hargrave, Takashi Hasebe, Masaya Hasegawa, Makoto Hattori, Sophie Henrot-Versille, Daniel Herman, Diego Herranz, Charles A. Hill, Gene Hilton, Yukimasa Hirota, Eric Hivon, Renee A. Hlozek, Yurika Hoshino, Elena de la Hoz, Johannes Hubmayr, Kiyotomo Ichiki, Teruhito Iida, Hiroaki Imada, Kosei Ishimura, Hirokazu Ishino, Greg Jaehnig, Tooru Kaga, Shingo Kashima, Nobuhiko Katayama, Akihiro Kato, Takeo Kawasaki, Reijo Keskitalo, Theodore Kisner, Yohei Kobayashi, Nozomu Kogiso, Alan Kogut, Kazunori Kohri, Eiichiro Komatsu, Kunimoto Komatsu, Kuniaki Konishi, Nicoletta Krachmalnicoff, Ingo Kreykenbohm, Chao-Lin L. Kuo, Akihiro Kushino, Luca Lamagna, Jeff Lanen, Massimiliano Lattanzi, Adrian T. Lee, Clement Leloup, Francois Levrier, Eric Linder, Thibaut Louis, Gemma Luzzi, Thierry Maciaszek, Bruno Maffei, Davide Maino, Muneyoshi Maki, Stefano Mandelli, Enrique Martinez-Gonzalez, Silvia Masi, Tomotake Matsumura, Aniello Mennella, Marina Migliaccio, Yuto Minami, Kazuhisa Mitsuda, Joshua Montgomery, Ludovic Montier, Gianluca Morgante, Baptiste Mot, Yasuhiro Murata, John A. Murphy, Makoto Nagai, Yuya Nagano, Taketo Nagasaki, Ryo Nagata, Shogo Nakamura, Toshiya Namikawa, Paolo Natoli, Simran Nerval, Toshiyuki Nishibori, Haruki Nishino, Fabio Noviello, Creidhe O'Sullivan, Hideo Ogawa, Hiroyuki Ogawa, Shugo Oguri, Hiroyuki Ohsaki, Izumi S. Ohta, Norio Okada, Nozomi Okada, Luca Pagano, Alessandro Paiella, Daniela Paoletti, Guillaume Patanchon, Julien Peloton, Francesco Piacentini, Giampaolo Pisano, Gianluca Polenta, Davide Poletti, Thomas Prouve, Giuseppe Puglisi, Damien Rambaud, Christopher Raum, Sabrina Realini, Martin Reinecke, Mathieu Remazeilles, Alessia Ritacco, Gilles Roudil, Jose A. Rubino-Martin, Megan Russell, Haruyuki Sakurai, Yuki Sakurai, Maura Sandri, Manami Sasaki, Giorgio Savini, Douglas Scott, Joseph Seibert, Yutaro Sekimoto, Blake Sherwin, Keisuke Shinozaki, Maresuke Shiraishi, Peter Shirron, Giovanni Signorelli, Graeme Smecher, Samantha Stever, Radek Stompor, Hajime Sugai, Shinya Sugiyama, Aritoki Suzuki, Junichi Suzuki, Trygve L. Svalheim, Eric Switzer, Ryota Takaku, Hayato Takakura, Satoru Takakura, Yusuke Takase, Youichi Takeda, Andrea Tartari, Ellen Taylor, Yutaka Terao, Harald Thommesen, Keith L. Thompson, Ben Thorne, Takayuki Toda, Maurizio Tomasi, Mayu Tominaga, Neil Trappe, Matthieu Tristram, Masatoshi Tsuji, Masahiro Tsujimoto, Carole Tucker, Joe Ullom, Gerard Vermeulen, Patricio Vielva, Fabrizio Villa, Michael Vissers, Nicola Vittorio, Ingunn Wehus, Jochen Weller, Benjamin Westbrook, Joern Wilms, Berend Winter, Edward J. Wollack, Noriko Y. Yamasaki, Tetsuya Yoshida, Junji Yumoto, Mario Zannoni, Andrea Zonca
    SPACE TELESCOPES AND INSTRUMENTATION 2020: OPTICAL, INFRARED, AND MILLIMETER WAVE, 11443, 2021  
    LiteBIRD, the Lite (Light) satellite for the study of B-mode polarization and Inflation from cosmic background Radiation Detection, is a space mission for primordial cosmology and fundamental physics. JAXA selected LiteBIRD in May 2019 as a strategic large-class (L-class) mission, with its expected launch in the late 2020s using JAXA's H3 rocket. LiteBIRD plans to map the cosmic microwave background (CMB) polarization over the full sky with unprecedented precision. Its main scientific objective is to carry out a definitive search for the signal from cosmic inflation, either making a discovery or ruling out well-motivated inflationary models. The measurements of LiteBIRD will also provide us with an insight into the quantum nature of gravity and other new physics beyond the standard models of particle physics and cosmology. To this end, LiteBIRD will perform full-sky surveys for three years at the Sun-Earth Lagrangian point L2 for 15 frequency bands between 34 and 448 GHz with three telescopes, to achieve a total sensitivity of 2.16 mu K-arcmin with a typical angular resolution of 0.5 degrees at 100 GHz. We provide an overview of the LiteBIRD project, including scientific objectives, mission requirements, top-level system requirements, operation concept, and expected scientific outcomes.
  • 山村一誠, 金田英宏, 小川博之, 中川貴雄, 松原英雄, 山田亨, 鈴木仁研, 尾中敬, 河野孝太郎
    日本天文学会年会講演予稿集, 2021, 2021  
  • 東谷千比呂, 中川貴雄, 松原英雄, 鈴木仁研, 磯部直樹, 篠崎慶亮, 西城大, 松本潤, 澤田健一郎, 安藤麻紀子, 内田英樹, 北本和也, 佐藤洋一, 水谷忠均, 巳谷真司, 後藤健, 竹内伸介, 小川博之, 金田英宏
    日本天文学会年会講演予稿集, 2021, 2021  
  • 原弘久, 末松芳法, 勝川行雄, 納富良文, 篠田一也, 清水敏文, 備後博生, 峯杉賢治, 後藤健, 太刀川純孝, 小川博之, 木本雄吾, 川手朋子, 今田晋亮, 一本潔, 永田伸一
    日本天文学会年会講演予稿集, 2021, 2021  
  • 鈴木仁研, 中川貴雄, 小川博之, 北本和也, 篠崎慶亮, 竹内伸介, 内田英樹, 後藤健, 西城大, 佐藤洋一, 澤田健一郎, 東谷千比呂, 松原英雄, 松本純, 水谷忠均, 山田亨, 山村一誠, 金田英宏
    日本天文学会年会講演予稿集, 2021, 2021  
  • 山村一誠, 金田英宏, 小川博之, 中川貴雄, 松原英雄, 山田亨, 鈴木仁研, 和田武彦, 石原大助, 大藪進喜
    日本天文学会年会講演予稿集, 2021, 2021  
  • 松田フレドリック, 一色雅仁, 小川博之, 奥平俊暁, 小栗秀悟, 小田切公秀, 加賀亨, 鹿島伸悟, 佐藤泰貴, 関本裕太郎, 堂谷忠靖, 宮崎康行, 吉田誠至, 綿貫一也
    日本天文学会年会講演予稿集, 2021, 2021  
  • 小川博之
    日本航空宇宙学会西部支部講演会講演集(CD-ROM), 2021, 2021  
  • 小財正義, 福家英之, 岡崎峻, 小川博之, 西城大, 徳永翔, 山谷昌大, 吉田哲也, 中上裕輔, 吉田篤正, 和田拓也, 今村光拓, 清水雄輝, 山田昇, 小池貴久, 加藤千尋, 宗像一起, 永井大樹, 今西優香, 河内明子, 小林聖平, 高橋俊, 竹村薫, 奈良祥太朗, 本木誠人, 井上剛良, HAILEY C.J., PEREZ K., FABRIS L., CRAIG W., ONG R., BOGGS S., DOETINCHEM P.v., BOEZIO M.
    日本物理学会講演概要集(CD-ROM), 76(1), 2021  
  • 瀧口, 裕太郎, 太刀川, 純孝, 小川, 博之, 麓, 耕二, 齋藤, 智彦, TAKIGUCHI, Yutaro, TACHIKAWA, Sumitaka, OGAWA, Hiroyuki, FUMOTO, Koji, SAITOH, Tomohiko
    令和2年度宇宙航行の力学シンポジウム = Symposium on Flight Mechanics and Astrodynamics: 2020, Dec, 2020  
    令和2年度宇宙航行の力学シンポジウム(2020年12月14日-15日. オンライン開催) Symposium on Flight Mechanics and Astrodynamics: 2020 (December 14-15, 2020. Online Meeting) PDF再処理の為、2023年3月8日に差替 資料番号: SA6000164044
  • 福家 英之, 小財 正義, 小川 博之, 岡崎 峻, 西城 大, 徳永 翔, 山谷 昌大, 吉田 哲也, 中上 裕輔, 和田 拓也, 吉田 篤正, 今村 光拓, 清水 雄輝, 山田 昇, 小池 貴久, 加藤 千尋, 宗像 一起, 永井 大樹, 今西 優香, 河内 明子, 小林 聖平, 本木 誠人, 奈良 祥太朗, 高橋 俊, 竹村 薫, 井上 剛良, HAILEY Charles, PEREZ Kerstin, FABRIS Lorenzo, CRAIG William, ONG Rene, BOGGS Steven, DOETINCHEM Philip von, BOEZIO Mirko, FUKE Hideyuki, KOZAI Masayoshi, OGAWA Hiroyuki, OKAZAKI Shun, SAIJO Masaru, TOKUNAGA Kakeru, YAMATANI Masahiro, YOSHIDA Tetsuya, NAKAGAMI Yusuke, WADA Takuya, YOSHIDA Atsumasa, IMAMURA Hikaru, SHIMIZU Yuki, YAMADA Noboru, KOIKE Takahisa, KATO Chihiro, MUNAKATA Kazuoki, NAGAI Hiroki, IMANISHI Yuka, KAWACHI Akiko, KOBAYASHI Shohei, MOTOKI Makoto, NARA Shotaro, TAKAHASHI Shun, TAKEMURA Kaoru, INOUE Takayoshi, HAILEY Charles, PEREZ Kerstin, FABRIS Lorenzo, CRAIG William, ONG Rene, BOGGS Steven, DOETINCHEM Philip von, BOEZIO Mirko
    大気球シンポジウム: 2020年度 = Balloon Symposium: 2020, Nov, 2020  
    大気球シンポジウム 2020年度(2020年11月5-6日. 宇宙航空研究開発機構宇宙科学研究所(JAXA)(ISAS)), 相模原市, 神奈川県著者人数: 34名資料番号: SA6000151006レポート番号: isas20-sbs-006
  • 福家英之, 小財正義, 小川博之, 岡崎峻, 西城大, 徳永翔, 山谷昌大, 吉田哲也, 中上裕輔, 和田拓也, 吉田篤正, 清水雄輝, 山田昇, 小池貴久, 加藤千尋, 宗像一起, 永井大樹, 今西優香, 河内明子, 小林聖平, 本木誠人, 奈良祥太朗, 高橋俊, 竹村薫, 井上剛良, HAILEY C.J., PEREZ K., FABRIS L., CRAIG W., ONG R., BOGGS S., DOETINCHEM P.v., BOEZIO M.
    日本物理学会講演概要集(CD-ROM), 75(2), 2020  
  • 小林聖平, 岡崎峻, 西城大, 福家英之, 小川博之, 河内明子, 今西優香
    日本物理学会講演概要集(CD-ROM), 75(2), 2020  
  • Takao Nakagawa, Ken Goto, Hidehiro Kaneda, Hideo Matsuhara, Jun Matsumoto, Tadahito Mizutani, Hiroyuki Ogawa, Masaru Saijo, Yoichi Sato, Kenichiro Sawada, Hiroshi Shibai, Keisuke Shinozaki, Hiroyuki Sugita, Shinsuke Takeuchi, Chihiro Tokoku, Thierry Tirolien, Hideki Uchida
    Proceedings of SPIE - The International Society for Optical Engineering, 11443, 2020  
    We present an overview of the cryogenic system of the next-generation infrared observatory mission SPICA. One of the most critical requirements for the SPICA mission is to cool the whole science equipment, including the 2.5 m telescope, to below 8 K to reduce the thermal background and enable unprecedented sensitivity in the mid- and far-infrared region. Another requirement is to cool focal plane instruments to achieve superior sensitivity. We adopt the combination of effective radiative cooling and mechanical cryocoolers to accomplish the thermal requirements for SPICA. The radiative cooling system, which consists of a series of radiative shields, is designed to accommodate the telescope in the vertical configuration. We present thermal model analysis results that comply with the requirements to cool the telescope and focal plane instruments.
  • Keisuke Shinozaki, Yoichi Sato, Chihiro Tokoku, Masaru Saijo, Hiroyuki Ogawa, Takao Nakagawa, Kenichiro Sawada, Hiroyuki Sugita, Tadahito Mizutani, Hideo Matsuhara, Shoji Tsunematsu, Seiji Yoshida, Kenichi Kanao, Akinobu Okabayashi, Katsuhiro Narasaki, Hiroshi Shibai
    Proceedings of SPIE - The International Society for Optical Engineering, 11443, 2020  
    The Space Infrared Telescope for Cosmology and Astrophysics (SPICA) mission is to be launched into orbit around the second Lagrangian point (L2) in the Sun-Earth system. Taking advantage of the thermal environment in L2, a 2.5m-class large IR telescope is cooled below 8K in combination with effective radiant cooling and a mechanical cooling system. SPICA adopts a cryogen-free system to prevent the mission operation lifetime being limited by the amount of cryogen as a refrigerant. Currently, the mechanical cooler system with the feasible solution giving a proper margin is proposed. As a baseline design, 4K / 1K-class Joule-Thomson coolers are used to cool the telescope and thermal interface for Focal Plane Instruments (FPIs). Additionally, two sets of double stage stirling coolers (2STs) are used to cool the telescope shield. In this design, nominal operation of FPIs can be kept when one mechanical cooler is in failure. In this paper, current baseline configuration of the mechanical cooler system and current status of mechanical coolers developments which need to satisfy the specific requirements of SPICA cryogenic system are presented.

Books and Other Publications

 1

Presentations

 33

Research Projects

 10

Industrial Property Rights

 6

Academic Activities

 1

● 指導学生等の数

 6
  • Fiscal Year
    2018年度(FY2018)
    Doctoral program
    1
  • Fiscal Year
    2019年度(FY2019)
    Doctoral program
    2
    Master’s program
    1
    JSPS Research Fellowship (Young Scientists)
    1
  • Fiscal Year
    2020年度(FY2020)
    Doctoral program
    1
    Master’s program
    1
    JSPS Research Fellowship (Young Scientists)
    1
  • Fiscal Year
    2018年度(FY2018)
    Doctoral program
    1
  • Fiscal Year
    2019年度(FY2019)
    Doctoral program
    2
    Master’s program
    1
    JSPS Research Fellowship (Young Scientists)
    1
  • Fiscal Year
    2020年度(FY2020)
    Doctoral program
    1
    Master’s program
    1
    JSPS Research Fellowship (Young Scientists)
    1

● 専任大学名

 2
  • Affiliation (university)
    東京大学(University of Tokyo)
  • Affiliation (university)
    東京大学(University of Tokyo)

● 所属する所内委員会

 6
  • ISAS Committee
    研究所会議
  • ISAS Committee
    プログラム会議
  • ISAS Committee
    信頼性品質会議
  • ISAS Committee
    環境・安全管理統括委員会
  • ISAS Committee
    ISASニュース編集小委員会
  • ISAS Committee
    宇宙科学プログラム技術委員会