Curriculum Vitaes

Masato Nakamura

  (中村 正人)

Profile Information

Affiliation
Professor, Institute of Space and Astronautical Science, Solar system science division, Japan Aerospace Exploration Agency
Degree
Doctor of Science(Oct, 1987, The University of Tokyo)

Other name(s) (e.g. nickname)
ISAS
J-GLOBAL ID
200901098690652704
researchmap Member ID
1000161601

External link

Committee Memberships

 7

Papers

 173
  • T. Nagai, I. Shinohara, Y. Saito, A. Ieda, R. Nakamura
    Journal of Geophysical Research: Space Physics, 128(12), Dec, 2023  
    The spacecraft Geotail surveyed the near-Earth plasma sheet from XGSM = −10 to −31 RE and YGSM = −20 to +20 RE during the period from 1994 to 2022. It observed 243 magnetic reconnection events and 785 tailward flow events under various solar wind conditions during plasma sheet residence time of over 23,000 hr. Magnetic reconnections associated with the onset of magnetospheric substorms occur mostly in the range XGSM = −23 to −31 RE. When the solar wind is intense and high substorm activities continue, magnetic reconnection can occur closer to the Earth. The YGSM locations of magnetic reconnections depend on the solar wind conditions and on previous substorm activity. Under normal solar wind conditions, magnetic reconnection occurs preferentially in the pre-midnight plasma sheet. Under conditions with intense (weak) solar wind energy input, however, magnetic reconnection can occur in the post-midnight (duskside) plasma sheet. Continuous substorm activity tends to shift the magnetic reconnection site duskward. The plasma sheet thinning proceeds faster under intense solar wind conditions, and the loading process that provides the preconditions for magnetic reconnection becomes shorter. When magnetic flux piles up during a prolonged period with a strongly northward-oriented interplanetary magnetic field (IMF) Bz, the time necessary to provide the preconditions for magnetic reconnection becomes longer. Although the solar wind conditions are the primary factors that control the location and timing of magnetic reconnections, the plasma sheet conditions created by preceding substorm activity or the strongly northward IMF Bz can modify the solar wind control.
  • Yeon Joo Lee, Antonio García Muñoz, Atsushi Yamazaki, Eric Quémerais, Stefano Mottola, Stephan Hellmich, Thomas Granzer, Gilles Bergond, Martin Roth, Eulalia Gallego-Cano, Jean-Yves Chaufray, Rozenn Robidel, Go Murakami, Kei Masunaga, Murat Kaplan, Orhan Erece, Ricardo Hueso, Petr Kabáth, Magdaléna Špoková, Agustín Sánchez-Lavega, Myung-Jin Kim, Valeria Mangano, Kandis-Lea Jessup, Thomas Widemann, Ko-ichiro Sugiyama, Shigeto Watanabe, Manabu Yamada, Takehiko Satoh, Masato Nakamura, Masataka Imai, Juan Cabrera
    The Planetary Science Journal, 3(9) 209-209, Sep 1, 2022  
    Abstract We performed a unique Venus observation campaign to measure the disk brightness of Venus over a broad range of wavelengths in 2020 August and September. The primary goal of the campaign was to investigate the absorption properties of the unknown absorber in the clouds. The secondary goal was to extract a disk mean SO2 gas abundance, whose absorption spectral feature is entangled with that of the unknown absorber at ultraviolet wavelengths. A total of three spacecraft and six ground-based telescopes participated in this campaign, covering the 52–1700 nm wavelength range. After careful evaluation of the observational data, we focused on the data sets acquired by four facilities. We accomplished our primary goal by analyzing the reflectivity spectrum of the Venus disk over the 283–800 nm wavelengths. Considerable absorption is present in the 350–450 nm range, for which we retrieved the corresponding optical depth of the unknown absorber. The result shows the consistent wavelength dependence of the relative optical depth with that at low latitudes, during the Venus flyby by MESSENGER in 2007, which was expected because the overall disk reflectivity is dominated by low latitudes. Last, we summarize the experience that we obtained during this first campaign, which should enable us to accomplish our second goal in future campaigns.
  • Kiichi Fukuya, Takeshi Imamura, Makoto Taguchi, Tetsuya Fukuhara, Toru Kouyama, Takeshi Horinouchi, Javier Peralta, Masahiko Futaguchi, Takeru Yamada, Takao M. Sato, Atsushi Yamazaki, Shin ya Murakami, Takehiko Satoh, Masahiro Takagi, Masato Nakamura
    Nature, 595(7868) 511-515, Jul 22, 2021  
    Although Venus is a terrestrial planet similar to Earth, its atmospheric circulation is much different and poorly characterized1. Winds at the cloud top have been measured predominantly on the dayside. Prominent poleward drifts have been observed with dayside cloud tracking and interpreted to be caused by thermal tides and a Hadley circulation2–4; however, the lack of nightside measurements over broad latitudes has prevented the unambiguous characterization of these components. Here we obtain cloud-tracked winds at all local times using thermal infrared images taken by the Venus orbiter Akatsuki, which is sensitive to an altitude of about 65 kilometres5. Prominent equatorward flows are found on the nightside, resulting in null meridional velocities when these are zonally averaged. The velocity structure of the thermal tides was determined without the influence of the Hadley circulation. The semidiurnal tide was found to have an amplitude large enough to contribute to the maintenance of the atmospheric superrotation. The weakness of the mean meridional flow at the cloud top implies that the poleward branch of the Hadley circulation exists above the cloud top and that the equatorward branch exists in the clouds. Our results should shed light on atmospheric superrotation in other celestial bodies.
  • T. M. Sato, T. Satoh, H. Sagawa, N. Manago, Y. J. Lee, S. Murakami, K. Ogohara, G. L. Hashimoto, Y. Kasaba, A. Yamazaki, M. Yamada, S. Watanabe, T. Imamura, M. Nakamura
    Icarus, 345 113682-113682, Jul 15, 2020  Peer-reviewed
    © 2020 Elsevier Inc. We describe the dayside cloud top structure of Venus as retrieved from 93 images acquired at a wide variety of solar phase angles (0–120°) using the 2.02-μm channel of the 2-μm camera (IR2) onboard the Venus orbiter, Akatsuki, from April 4 to May 25, 2016. Since the 2.02-μm channel is located in a CO2 absorption band, the sunlight reflected from Venus allowed us to determine the cloud top altitude corresponding to unit aerosol optical depth at 2.02 μm. First, the observed solar phase angle dependence and the center-to-limb variation of the reflected sunlight in the region equatorward of 30° were used to construct a spatially averaged cloud top structure characterized by cloud top altitude zc, Mode 2 modal radius rg,2, and cloud scale height H, which were 70.4 km, 1.06 μm, and 5.3 km, respectively. Second, cloud top altitudes at individual locations were retrieved on a pixel-by-pixel basis with an assumption that rg,2 and H were uniform for the entire planet. The latitudinal structure of the cloud top altitude was symmetric with respect to the equator. The average cloud top altitude was 70.5 km in the equatorial region and showed a gradual decrease of ~2 km by the 45° latitude. It rapidly dropped at latitudes of 50–60° and reached 61 km in latitudes of 70–75°. The average cloud top altitude in the region equatorward of 30° showed negligible local time dependence, with changes up to 1 km at most. Local variations in cloud top altitude, including stationary gravity wave features, occurred within several hundreds of meters. Although long zonal or tilted streaky features poleward of ~45° were clearly identifiable, features in the low and middle latitudes were usually subtle. These did not necessarily appear as local variations at the cloud top level, where mottled and patchy UV patterns were observed, suggestive of convection and turbulence at the cloud top level.
  • J. Peralta, T. Navarro, C. W. Vun, A. Sánchez‐Lavega, K. McGouldrick, T. Horinouchi, T. Imamura, R. Hueso, J. P. Boyd, G. Schubert, T. Kouyama, T. Satoh, N. Iwagami, E. F. Young, M. A. Bullock, P. Machado, Y. J. Lee, S. S. Limaye, M. Nakamura, S. Tellmann, A. Wesley, P. Miles
    Geophysical Research Letters, 47(11), Jun 16, 2020  Peer-reviewed

Misc.

 86

Books and Other Publications

 5

Research Projects

 23