Profile Information
- Affiliation
- Japan Aerospace Exploration AgencyTokyo University of Science
- Degree
- 博士(工学)(東京工業大学)
- J-GLOBAL ID
- 202101020564375130
- researchmap Member ID
- R000015338
Research Interests
17Research Areas
3Committee Memberships
4-
Mar, 2008 - Present
-
2020 - 2021
Awards
2-
Dec, 2020
-
Apr, 2016
Papers
38-
High Temperature Materials and Processes, 44(1), Jan 1, 2025Abstract In this study, thermal effusivity distributions of two polished JSC-1A particles, a lunar regolith-simulating material, were measured using a thermal microscope. The results confirmed that the average thermal effusivity of the JSC-1A single particle was approximately half that of the FJS-1 single particle, a different type of lunar regolith-simulating material measured by a similar method. Also, the thermal effusivities of the existing mineral phases of pyroxene and anorthite in the particles were obtained and were comparable to those reported in the literature. A possible reason for the lower thermal conductivity of JSC-1A than that of FJS-1 could be the differences in the ratio of the mineral phases, and phase boundaries between the mineral phases.
-
INTERNATIONAL JOURNAL OF THERMOPHYSICS, 43(7), Jul, 2022 Peer-reviewedThis study aimed to measure the thermal effusivity distribution on a lunar regolith simulant (FJS-1) using a thermal microscope and to calculate the average thermal effusivity and thermal conductivity using density and specific heat. Moreover, discussions were conducted based on the results of the microstructural analysis of the sample. The FJS-1 particles were embedded in an epoxy resin and polished to a mirror finish. The samples were analyzed using scanning electron microscopy equipped with energy-dispersive X-ray spectroscopy (SEM-EDS). X-ray diffraction (XRD) was performed to identify the mineral phases in FJS-1. The results of SEM-EDS and XRD showed that a single sand particle was composed of several minerals, such as anorthite and olivine. Then, the thermal microscope was used to obtain the distribution of the thermal effusivity of a particle from the mirror-finished sample in a 1 x 1 mm(2) area with intervals of 10 mu m. The measured thermal effusivity correlates with the SEM image of the sample. Anorthite has a small thermal effusivity of 1.99 +/- 0.31 kJ center dot s(-0.5)center dot m(-2)center dot K-1, while olivine has a large thermal effusivity of 2.73 +/- 0.35 kJ center dot s(-0.5)center dot m(-2)center dot K-1. In both cases, the thermal effusivity was found to be of the same order of magnitude as the reported values. The average thermal effusivity and conductivity of a single particle were determined to be 2.4 +/- 0.6 kJ center dot s(-0.5)center dot m(-2)center dot K-1 and 2.6 +/- 1.3 W m(-1)center dot K-1, respectively, based on the proportion of existing phases.
-
International Journal of Thermophysics, 43(6), Jun, 2022 Peer-reviewedAbstract In recent planetary exploration space missions, spacecraft are exposed to severe thermal environments that are sometimes more extreme than those experienced in earth orbits. The development of advanced thermal control materials and devices together with reliable and accurate measurements of their thermophysical properties are needed for the development of systems designed to meet the engineering challenges associated with these space missions. We provide a comprehensive review of the state-of-the-art advanced passive thermal control materials and devices that are available for space applications, specifically, variable emissivity thermal control materials and microelectromechanical systems (MEMS), radiofrequency (RF)-transparent and/or tunable solar absorptivity and total hemispherical emissivity thermal control materials, and a passive re-deployable radiator with advanced materials and insulation. Prior to our in-depth review of these thermal control materials, we briefly summarize the thermal environments surrounding spacecraft, the characteristics of thermophysical properties for spacecraft materials that differ from those of materials for ground use, and the significance of solar absorptivity and total hemispherical emissivity for passive thermal control in space. In all four topics of materials and devices, the following subjects are overviewed: the basic principle of passive thermal control techniques in space, the measurement of thermophysical properties of those novel materials, simulation and/or on-orbit verification thermal performance tests, degradation tests in space environments, and some aspects of the implementation of the above-described materials and devices in actual space missions.
-
熱物性 : 日本熱物性学会会誌, Japan journal of thermophysical properties, 35(3) 97-104, Aug, 2021 Peer-reviewed
-
熱物性, 35(1), 2021 Peer-reviewed
Misc.
16-
令和2年度宇宙航行の力学シンポジウム = Symposium on Flight Mechanics and Astrodynamics: 2020, Dec, 2020令和2年度宇宙航行の力学シンポジウム(2020年12月14日-15日. オンライン開催) Symposium on Flight Mechanics and Astrodynamics: 2020 (December 14-15, 2020. Online Meeting) PDF再処理の為、2023年3月8日に差替 資料番号: SA6000164044
-
Aeronautical and Space Sciences Japan, 68(5) 142-148, 2020
-
Planetary People - The Japanese Society for Planetary Sciences, 27(3) 258-261, 2018
-
Journal of The Society of Instrument and Control Engineers, 54(5) 315-320, 2015
-
25(4) 220-221, Nov 30, 2011
-
Netsu bussei, 24(3) 147-151, Aug 30, 2010
-
宇宙科学研究所報告. 特集: M-V型ロケット(1号機から4号機まで), 47(47) 331-350, Mar, 2003M-V型ロケットのテレメータ/コマンドシステムは前世代のM-3SII型ロケットに比べて大幅に変更されている.M-V型ロケットもM-3SII型ロケットと同じく3段式であるが,M-V型では第3段に計器部が設けられ,その結果,そこにテレメータ送信機を搭載することとした.すなわち,第1段から第3段まで各段にテレメータ送信機を搭載することとした.第3段に搭載されるテレメータ送信機はS帯周波数を用い,伝送速度も高めた新規開発のものである.姿勢制御系データの伝送という重要な役割を担っている.搭載送信アンテナに関しては,ロケットの径が大きくなったことにより,M-3SII型の時のように単一のアンテナでは十分なカバレッジを確保できなくなったため,各段とも,2本のアンテナを,それぞれ180度離れた位置に取り付けた.地上局からのガイド送信により,KSC局,あるいは宮崎ダウンレンジ局にとって条件の良い方を選択した.地上送受信系については,M-3SII型の時とほぼ同様である.第2段燃焼ガスが通信回線に及ぼす影響を考慮し,宮崎にダウンレンジ局を設けた.受信結果はほぼ予想通りで,KSC局では第2段モータ点火と同時に,燃焼ガスの影響によりテレメトリデータに欠損を生じたが,宮崎ダウンレンジ局においてその間のデータ補完することができた.資料番号: SA0200138000
-
宇宙科学研究所報告. 特集: M-V型ロケット(1号機から4号機まで), 47(47) 483-496, Mar, 2003電気計装は各段に配置された搭載機器への電源供給,計測装置からテレメータ装置への信号伝送,姿勢制御装置からアクチュエータへの命令伝達等を担う電気系配線である.ここではM-V-1,3,4号機における搭載機器系統と電気計装について報告する.また,各段に搭載された機器を管制するRB(搭載機器)管制システムはM-V型ロケットから光ケーブルを用いた制御方式を採用した.従来は各制御項目に対応した制御回線を離脱コネクタ経由で機体に接続していたが,新方式により機体外の回線数を大幅に減少することができた.RB管制に関しては,管制装置の概要を述べ,M-V-4号機までの運用について報告する.資料番号: SA0200148000
-
PROCEEDINGS OF THE 9TH INTERNATIONAL SYMPOSIUM ON MATERIALS IN A SPACE ENVIRONMENT, 540 41-47, 2003 Peer-reviewedA new thermal control material named the Smart Radiation Device (SRD) was studied and improved. An SRD can be used as a variable emittance radiator; it controls the heat radiated to deep space without electrical instruments or mechanical parts, simply by changing emissivity. This device reduces the energy consumption of the on-board electrical heater, and decreases the weight and the cost of the thermal control system on the spacecraft. Three types of SRD were tried in the process of improving optical properties. In order to reduce solar absorptance, we designed and applied multilayer films for SRDs to reflect solar radiation while retaining its infrared radiative properties. In this paper, we introduce the optical properties of the SRD, a space environmental simulation test on ground, and environmental tests in space. In addition, we report the optical properties of the value-added SRD.
-
SOLID-STATE CHEMISTRY OF INORGANIC MATERIALS IV, 755 419-424, 2003 Peer-reviewedVariable-emittance radiators based on the metal-insulator transition of (La,Sr)MnO3 have been developed. The emittance property of the material was evaluated from infrared reflectance spectra; that is, (La,Sr)MnO3 Shows low emittance at low temperature but high emittance at high temperature. Moreover, the emittance property significantly changes at the metal-insulator transition temperature, where the material changes from a highly reflective (i.e., low emissivity) metal to a less reflective (i.e., high emissivity) insulator. The (La,Sr)MnO3 thin-films fitted on a spacecraft surface can, therefore, be used to automatically control the emmisive heat transfer from the spacecraft without the need for electrical power. The developed (La,Sr)MnO3 thin-film radiator also greatly reduces the weight and production cost of the thermal control devices.
Books and Other Publications
1Presentations
30-
Meeting Abstracts of the Physical Society of Japan, 2018, The Physical Society of Japan
-
Meeting Abstracts of the Physical Society of Japan, 2018, The Physical Society of Japan
-
Meeting Abstracts of the Physical Society of Japan, 2018, The Physical Society of Japan
-
Dec, 2016, Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency(JAXA)(ISAS)32nd Symposium on Aerospace Structure and Materials (December 9, 2016. Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency (JAXA)(ISAS)), Sagamihara, Kanagawa Japan
-
Sep 6, 2016, Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency(JAXA)(ISAS)Symposium on Flight Mechanics and Astrodynamics: 2017 (December 7-8, 2017. Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency (JAXA)(ISAS)), Sagamihara, Kanagawa Japan
Major Professional Memberships
4Works
7Major Research Projects
7-
科学研究費助成事業 基盤研究(B), 日本学術振興会, Apr, 2021 - Mar, 2024
-
科学研究費助成事業 挑戦的研究(萌芽), 日本学術振興会, Jul, 2020 - Mar, 2022
-
Grants-in-Aid for Scientific Research Grant-in-Aid for Scientific Research (C), Japan Society for the Promotion of Science, Apr, 2016 - Mar, 2019
-
Grants-in-Aid for Scientific Research Grant-in-Aid for Challenging Exploratory Research, Japan Society for the Promotion of Science, Apr, 2014 - Mar, 2016
-
Grants-in-Aid for Scientific Research Grant-in-Aid for Scientific Research (C), Japan Society for the Promotion of Science, Apr, 2013 - Mar, 2016
-
Grants-in-Aid for Scientific Research Grant-in-Aid for Scientific Research (C), Japan Society for the Promotion of Science, 2010 - 2012
Industrial Property Rights
6Academic Activities
3● 指導学生等の数
6-
Fiscal Year2021年度(FY2021)Doctoral program0人Students under Cooperative Graduate School System2人(東京理科大学大学院)Students under Skills Acquisition System1人(慶應義塾大学)、2人(慶應義塾大学大学院)
-
Fiscal Year2020年度(FY2020)Doctoral program0人Students under Cooperative Graduate School System3人(東京理科大学大学院)Students under Skills Acquisition System1人(東京理科大学)、3人(慶應義塾大学大学院)
-
Fiscal Year2019年度(FY2019)Doctoral program0人Students under Cooperative Graduate School System3人(東京理科大学大学院)Students under Skills Acquisition System1人(東京理科大学)、2人(慶應義塾大学)、2人(慶應義塾大学大学院)
-
Fiscal Year2018年度(FY2018)Doctoral program1人Students under Cooperative Graduate School System1人(東京理科大学大学院)Students under Skills Acquisition System2人(東京理科大学)、1人(慶應義塾大学)、2人(慶應義塾大学大学院)
-
Fiscal Year2022年度(FY2022)Doctoral program0人Students under Cooperative Graduate School System2人(東京理科大学大学院)Students under Skills Acquisition System1人(慶應義塾大学)、1人(慶應義塾大学大学院)、1人(東京理科大学)、1人(新潟大学大学院)
-
Fiscal Year2023年度(FY2023)Doctoral program0人Students under Cooperative Graduate School System1人(東京理科大学大学院)Students under Skills Acquisition System1人(慶應義塾大学)、2人(慶應義塾大学大学院)、2人(新潟大学大学院)、1人(上智大学大学院)
● 所属する所内委員会
1-
ISAS Committee化学物質専門部会(2019.12~現在)