Curriculum Vitaes

Ryuichi Fujimoto

  (藤本 龍一)

Profile Information

Affiliation
Professor, Department of Space Astronomy and Astrophysics, Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency
Professor, Graduate Institute for Advanced Studies, The Graduate University for Advanced Studies (SOKENDAI)
Visiting Professor, School of Science, Tokyo Institute of Technology
Degree
Ph. D.(The University of Tokyo)
master's degree(The University of Tokyo)

Researcher number
20280555
ORCID ID
 https://orcid.org/0000-0002-2374-7073
J-GLOBAL ID
200901095989600566
researchmap Member ID
1000363020

I have been developing cryogenic high-resolution X-ray microcalorimeter spectrometers onboard X-ray astronomy satellite. It was achieved as the Resolve instrument onboard XRISM, which was launched in September, 2023.

Here are research themes I can provide. (1) Analyze high-resolution X-ray spectroscopy data obtained by XRISM satellite, and research motion of the hot gas in clusters of galaxies, in order to understand the formation of the large-scale structures of the Universe. (2) Conduct experimental studies, in anticipation of LiteBIRD mission, that aims for observing the polarization of the cosmic microwave background radiation.

Message to students: Through the research, develop an understanding of specific natural phenomena, and also learn the process to reach fundamental physics laws that underlie the complex phenomena, together with experimental and/or analytical methods.


Committee Memberships

 2

Papers

 155
  • Hellier, C., Mukai, K., Ishida, M., Fujimoto, R.
    Monthly Notices of the Royal Astronomical Society, 280(3), 1996  
  • Hartman, R.C., Webb, J.R., Marscher, A.P., Travis, J.P., Dermer, C.D., Aller, H.D., Aller, M.F., Balonek, T.J., Bennett, K., Bloom, S.D., Fujimoto, R., Hermsen, W., Hughes, P., Jenkins, P., Kii, T., Kurfess, J.D., Making, F., Mattox, J.R., Von Montigny, C., Ohashi, T., Robson, I., Rvan, J., Sadun, A., Sch{\"o}nfelder, V., Smith, A.G., Ter{\"a}sranta, H., Tornikoski, M., Turner, M.J.L.
    Astrophysical Journal, 461(2 PART I), 1996  
  • Webb, J.R., Shrader, C.R., Balonek, T.J., Crenshaw, D.M., Kazanas, D., Clements, S., Smith, A.G., Nair, A.D., Leacock, R.J., Gombola, P.P., Sadun, A., Miller, H.R., Robson, I., Fujimoto, R., Makino, F., Kii, T., Aller, H., Aller, M., Hughes, P., Valtaoja, E., Ter{\"a}sranta, H., Salonen, E., Tornikoski, M., Chism, W.
    Astrophysical Journal, 422(2), 1994  
  • Mitsui T, Fujimoto R, Ishisaki Y, Ueda Y, Yamazaki Y, Asai S, Orito S
    Physical review letters, 70(15) 2265-2268, Apr, 1993  Peer-reviewed
  • K YOSHIDA, K MITSUDA, K EBISAWA, Y UEDA, R FUJIMOTO, T YAQOOB
    PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF JAPAN, 45(4) 605-616, 1993  Peer-reviewed
    The low-mass X-ray binary X1608-522 was observed with Ginga on three occasions from 1989 to 1991. The source was in the low state throughout the observations. The energy spectrum in the energy range of 2-60 keV can be approximated by a power-law function with a broad absorption-like structure. The structure can be represented either by partial absorption or by a reflection of the power-law spectrum. The ionization degree of the absorbing/reflecting medium increases when the source luminosity increases by a factor of about three, while the percentage of the absorbed/reflected component relative to the total intensity decreases. The power spectrum is characterized by a flat top below a certain frequency, while it decreases approximately as 1/f above that frequency. The turn-over frequency varies according to the source luminosity, and is in a range 0.2 to 1 Hz. Additional structures, which can be represented by a broad Lorentzian peak, also exist in the power spectrum. The physical state of the accretion disk is discussed in conjunction with the low state of black-hole candidates.

Misc.

 129
  • 佐藤浩介, 大橋隆哉, 石崎欣尚, 江副祐一郎, 山田真也, 山崎典子, 満田和久, 石田学, 前田良知, 田原譲, 三石郁之, 藤本龍一, 鶴剛, 太田直美, 大里健, 中島真也
    日本天文学会年会講演予稿集, 2018 225, Aug 20, 2018  
  • Alle, S.W., Aharonian, F., Akamatsu, H., Akimoto, F., Allen, S.W., Angelini, L., Audard, M., Awaki, H., Axelsson, M., Bamba, A., Bautz, M.W., Blandford, R., Brenneman, L.W., Brown, G.V., Bulbul, E., Cackett, E.M., Chernyakova, M., Chiao, M.P., Coppi, P.S., Costantini, E., De Plaa, J., De Vries, C.P., Den Herder, J.-W., Done, C., Dotani, T., Ebisawa, K., Eckart, M.E., Enoto, T., Ezoe, Y., Fabian, A.C., Ferrigno, C., Foster, A.R., Fujimoto, R., Fukazawa, Y., Furuzawa, A., Galeazzi, M., Gallo, L.C., Gandhi, P., Giustini, M., Goldwurm, A., Gu, L., Guainazzi, M., Haba, Y., Hagino, K., Hamaguchi, K., Harrus, I.M., Hatsukade, I., Hayashi, K., Hayashi, T., Hayashida, K., Hiraga, J.S., Hornschemeier, A., Hoshino, A., Hughes, J.P., Ichinohe, Y., Iizuka, R., Inoue, H., Inoue, Y., Ishida, M., Ishikawa, K., Ishisaki, Y., Iwai, M., Kaastra, J., Kallman, T., Kamae, T., Kataoka, J., Katsuda, S., Kawai, N., Kelley, R.L., Kilbourne, C.A., Kitaguchi, T., Kitamoto, S., Kitayama, T., Kohmura, T., Kokubun, M., Koyama, K., Koyama, S., Kretschmar, P., Krimm, H.A., Kubota, A., Kunieda, H., Laurent, P., Lee, S.-H., Leutenegger, M.A., Limousin, O.O., Loewenstein, M., Long, K.S., Lumb, D., Madejski, G., Maeda, Y., Maier, D., Makishima, K., Markevitch, M., Matsumoto, H., Matsushita, K., Mccammon, D., Mcnamara, B.R., Mehdipour, M., Miller, E.D., Miller, J.M., Mineshige, S., Mitsuda, K., Mitsuishi, I., Miyazawa, T., Mizuno, T., Mori, H., Mori, K., Mukai, K., Murakami, H., Mushotzky, R.F., Nakagawa, T., Nakajima, H., Nakamori, T., Nakashima, S., Nakazawa, K., Nobukawa, K.K., Nobukawa, M., Noda, H., Odaka, H., Ohashi, T., Ohno, M., Okajima, T., Ota, N., Ozaki, M., Paerels, F., Paltani, S., Petre, R., Pinto, C., Porter, F.S., Pottschmidt, K., Reynolds, C.S., Safi-Harb, S., Saito, S., Sakai, K., Sasaki, T., Sato, G., Sato, K., Sato, R., Sawada, M., Schartel, N., Serlemtsos, P.J., Seta, H., Shidatsu, M., Simionescu, A., Smith, R.K., Soong, Y., Stawarz, Ł., Sugawara, Y., Sugita, S., Szymkowiak, A., Tajima, H., Takahashi, H., Takahashi, T., Takeda, S., Takei, Y., Tamagawa, T., Tamura, T., Tanaka, T., Tanaka, Y., Tanaka, Y.T., Tashiro, M.S., Tawara, Y., Terada, Y., Terashima, Y., Tombesi, F., Tomida, H., Tsuboi, Y., Tsujimoto, M., Tsunemi, H., Suru, T.G., Uchida, H., Uchiyama, H., Uchiyama, Y., Ueda, S., Ueda, Y., Uno, S., Urry, C.M., Ursino, E., Watanabe, S., Werner, N., Wilkins, D.R., Williams, B.J., Yamada, S., Yamaguchi, H., Yamaoka, K., Yamasaki, N.Y., Yamauchi, M., Yamauchi, S., Yaqoob, T., Yatsu, Y., Yonetoku, D., Zhuravleva, I., Zoghbi, A., Nakaniwa, N.
    Publications of the Astronomical Society of Japan, 70(2), 2018  
    We report a Hitomi observation of IGR J16318-4848, a high-mass X-ray binary<br /> system with an extremely strong absorption of N_H~10^{24} cm^{-2}. Previous<br /> X-ray studies revealed that its spectrum is dominated by strong fluorescence<br /> lines of Fe as well as continuum emission. For physical and geometrical insight<br /> into the nature of the reprocessing material, we utilize the high spectroscopic<br /> resolving power of the X-ray microcalorimeter (the soft X-ray spectrometer;<br /> SXS) and the wide-band sensitivity by the soft and hard X-ray imager (SXI and<br /> HXI) aboard Hitomi. Even though photon counts are limited due to unintended<br /> off-axis pointing, the SXS spectrum resolves Fe K{\alpha_1} and K{\alpha_2}<br /> lines and puts strong constraints on the line centroid and width. The line<br /> width corresponds to the velocity of 160^{+300}_{-70} km s^{-1}. This<br /> represents the most accurate, and smallest, width measurement of this line made<br /> so far from any X-ray binary, much less than the Doppler broadening and shift<br /> expected from speeds which are characteristic of similar systems. Combined with<br /> the K-shell edge energy measured by the SXI and HXI spectra, the ionization<br /> state of Fe is estimated to be in the range of Fe I--IV. Considering the<br /> estimated ionization parameter and the distance between the X-ray source and<br /> the absorber, the density and thickness of the materials are estimated. The<br /> extraordinarily strong absorption and the absence of a Compton shoulder<br /> component is confirmed. These characteristics suggest reprocessing materials<br /> which are distributed in a narrow solid angle or scattering primarily with warm<br /> free electrons or neutral hydrogen.
  • Aharonian, F., Akamatsu, H., Akimoto, F., Allen, S.W., Angelini, L., Audard, M., Awaki, H., Axelsson, M., Bamba, A., Bautz, M.W., Blandford, R., Brenneman, L.W., Brown, G.V., Bulbul, E., Cackett, E.M., Chernyakova, M., Chiao, M.P., Coppi, P.S., Costantini, E., De Plaa, J., De Vries, C.P., Den Herder, J.-W., Done, C., Dotani, T., Ebisawa, K., Eckart, M.E., Enoto, T., Ezoe, Y., Fabian, A.C., Ferrigno, C., Foster, A.R., Fujimoto, R., Fukazawa, Y., Furuzawa, A., Galeazzi, M., Gallo, L.C., Gandhi, P., Giustini, M., Goldwurm, A., Gu, L., Guainazzi, M., Haba, Y., Hagino, K., Hamaguchi, K., Harrus, I.M., Hatsukade, I., Hayashi, K., Hayashi, T., Hayashida, K., Hiraga, J.S., Hornschemeier, A., Hoshino, A., Hughes, J.P., Ichinohe, Y., Iizuka, R., Inoue, H., Inoue, Y., Ishida, M., Ishikawa, K., Ishisaki, Y., Iwai, M., Kaastra, J., Kallman, T., Kamae, T., Kataoka, J., Katsuda, S., Kawai, N., Kelley, R.L., Kilbourne, C.A., Kitaguchi, T., Kitamoto, S., Kitayama, T., Kohmura, T., Kokubun, M., Koyama, K., Koyama, S., Kretschmar, P., Krimm, H.A., Kubota, A., Kunieda, H., Laurent, P., Lee, S.-H., Leutenegger, M.A., Limousin, O., Loewenstein, M., Long, K.S., Lumb, D., Madejski, G., Maeda, Y., Maier, D., Makishima, K., Markevitch, M., Matsumoto, H., Matsushita, K., McCammon, D., McNamara, B.R., Mehdipour, M., Miller, E.D., Miller, J.M., Mineshige, S., Mitsuda, K., Mitsuishi, I., Miyazawa, T., Mizuno, T., Mori, H., Mori, K., Mukai, K., Murakami, H., Mushotzky, R.F., Nakagawa, T., Nakajima, H., Nakamori, T., Nakashima, S., Nakazawa, K., Nobukawa, K.K., Nobukawa, M., Noda, H., Odaka, H., Ohashi, T., Ohno, M., Okajima, T., Ota, N., Ozaki, M., Paerels, F., Paltani, S., Petre, R., Pinto, C., Porter, F.S., Pottschmidt, K., Reynolds, C.S., Safi-Harb, S., Saito, S., Sakai, K., Sasaki, T., Sato, G., Sato, K., Sato, R., Sawada, M., Schartel, N., Serlemtsos, P.J., Seta, H., Shidatsu, M., Simionescu, A., Smith, R.K., Soong, Y., Stawarz, L., Sugawara, Y., Sugita, S., Szymkowiak, A., Tajima, H., Takahashi, H., Takahashi, T., Takeda, S., Takei, Y., Tamagawa, T., Tamura, T., Tanaka, T., Tanaka, Y., Tanaka, Y.T., Tashiro, M.S., Tawara, Y., Terada, Y., Terashima, Y., Tombesi, F., Tomida, H., Tsuboi, Y., Tsujimoto, M., Tsunemi, H., Tsuru, T.G., Uchida, H., Uchiyama, H., Uchiyama, Y., Ueda, S., Ueda, Y., Uno, S., Urry, C.M., Ursino, E., Watanabe, S., Werner, N., Wilkins, D.R., Williams, B.J., Yamada, S., Yamaguchi, H., Yamaoka, K., Yamasaki, N.Y., Yamauchi, M., Yamauchi, S., Yaqoob, T., Yatsu, Y., Yonetoku, D., Zhuravleva, I., Zoghbi, A., Uchida, Y.
    Publications of the Astronomical Society of Japan, 70(6), 2018  
    We present the results from the Hitomi Soft Gamma-ray Detector (SGD)<br /> observation of the Crab nebula. The main part of SGD is a Compton camera, which<br /> in addition to being a spectrometer, is capable of measuring polarization of<br /> gamma-ray photons. The Crab nebula is one of the brightest X-ray / gamma-ray<br /> sources on the sky, and, the only source from which polarized X-ray photons<br /> have been detected. SGD observed the Crab nebula during the initial test<br /> observation phase of Hitomi. We performed the data analysis of the SGD<br /> observation, the SGD background estimation and the SGD Monte Carlo simulations,<br /> and, successfully detected polarized gamma-ray emission from the Crab nebula<br /> with only about 5 ks exposure time. The obtained polarization fraction of the<br /> phase-integrated Crab emission (sum of pulsar and nebula emissions) is (22.1<br /> $\pm$ 10.6)% and, the polarization angle is 110.7$^o$ + 13.2 / $-$13.0$^o$ in<br /> the energy range of 60--160 keV (The errors correspond to the 1 sigma<br /> deviation). The confidence level of the polarization detection was 99.3%. The<br /> polarization angle measured by SGD is about one sigma deviation with the<br /> projected spin axis of the pulsar, 124.0$^o$ $\pm$0.1$^o$.
  • Aharonian, F., Akamatsu, H., Akimoto, F., Allen, S.W., Angelini, L., Audard, M., Awaki, H., Axelsson, M., Bamba, A., Bautz, M.W., Blandford, R., Brenneman, L.W., Brown, G.V., Bulbul, E., Cackett, E.M., Chernyakova, M., Chiao, M.P., Coppi, P.S., Costantini, E., De Plaa, J., De Vries, C.P., Den Herder, J.-W., Done, C., Dotani, T., Ebisawa, K., Eckart, M.E., Enoto, T., Ezoe, Y., Fabian, A.C., Ferrigno, C., Foster, A.R., Fujimoto, R., Fukazawa, Y., Furukawa, M., Furuzawa, A., Galeazzi, M., Gallo, L.C., Gandhi, P., Giustini, M., Goldwurm, A., Gu, L., Guainazzi, M., Haba, Y., Hagino, K., Hamaguchi, K., Harrus, I.M., Hatsukade, I., Hayashi, K., Hayashi, T., Hayashida, K., Hiraga, J.S., Hornschemeier, A., Hoshino, A., Hughes, J.P., Ichinohe, Y., Iizuka, R., Inoue, H., Inoue, Y., Ishida, M., Ishikawa, K., Ishisaki, Y., Iwai, M., Kaastra, J., Kallman, T., Kamae, T., Kataoka, J., Kato, Y., Katsuda, S., Kawai, N., Kelley, R.L., Kilbourne, C.A., Kitaguchi, T., Kitamoto, S., Kitayama, T., Kohmura, T., Kokubun, M., Koyama, K., Koyama, S., Kretschmar, P., Krimm, H.A., Kubota, A., Kunieda, H., Laurent, P., Lee, S.-H., Leutenegger, M.A., Limousin, O., Loewenstein, M., Long, K.S., Lumb, D., Madejski, G., Maeda, Y., Maier, D., Makishima, K., Markevitch, M., Matsumoto, H., Matsushita, K., McCammon, D., McNamara, B.R., Mehdipour, M., Miller, E.D., Miller, J.M., Mineshige, S., Mitsuda, K., Mitsuishi, I., Miyazawa, T., Mizuno, T., Mori, H., Mori, K., Mukai, K., Murakami, H., Mushotzky, R.F., Nakagawa, T., Nakajima, H., Nakamori, T., Nakashima, S., Nakazawa, K., Nobukawa, K.K., Nobukawa, M., Noda, H., Odaka, H., Ohashi, T., Ohno, M., Okajima, T., Ota, N., Ozaki, M., Paerels, F., Paltani, S., Petre, R., Pinto, C., Porter, F.S., Pottschmidt, K., Reynolds, C.S., Safi-Harb, S., Saito, S., Sakai, K., Sasaki, T., Sato, G., Sato, K., Sato, R., Sawada, M., Schartel, N., Serlemtsos, P.J., Seta, H., Shidatsu, M., Simionescu, A., Smith, R.K., Soong, Y., Stawarz, Ł., Sugawara, Y., Sugita, S., Szymkowiak, A., Tajima, H., Takahashi, H., Takahashi, T., Takeda, S., Takei, Y., Tamagawa, T., Tamura, T., Tanaka, T., Tanaka, Y., Tanaka, Y.T., Tashiro, M.S., Tawara, Y., Terada, Y., Terashima, Y., Tombesi, F., Tomida, H., Tsuboi, Y., Tsujimoto, M., Tsunemi, H., Tsuru, T.G., Uchida, H., Uchiyama, H., Uchiyama, Y., Ueda, S., Ueda, Y., Uno, S., Urry, C.M., Ursino, E., Watanabe, S., Werner, N., Wilkins, D.R., Williams, B.J., Yamada, S., Yamaguchi, H., Yamaoka, K., Yamasaki, N.Y., Yamauchi, M., Yamauchi, S., Yaqoob, T., Yatsu, Y., Yonetoku, D., Zhuravleva, I., Zoghbi, A.
    Publications of the Astronomical Society of Japan, 70(2), 2018  
    The present paper investigates the temperature structure of the X-ray<br /> emitting plasma in the core of the Perseus cluster using the 1.8--20.0 keV data<br /> obtained with the Soft X-ray Spectrometer (SXS) onboard the Hitomi Observatory.<br /> A series of four observations were carried out, with a total effective exposure<br /> time of 338 ks and covering a central region $\sim7&#039;$ in diameter. The SXS was<br /> operated with an energy resolution of $\sim$5 eV (full width at half maximum)<br /> at 5.9 keV. Not only fine structures of K-shell lines in He-like ions but also<br /> transitions from higher principal quantum numbers are clearly resolved from Si<br /> through Fe. This enables us to perform temperature diagnostics using the line<br /> ratios of Si, S, Ar, Ca, and Fe, and to provide the first direct measurement of<br /> the excitation temperature and ionization temperature in the Perseus cluster.<br /> The observed spectrum is roughly reproduced by a single temperature thermal<br /> plasma model in collisional ionization equilibrium, but detailed line ratio<br /> diagnostics reveal slight deviations from this approximation. In particular,<br /> the data exhibit an apparent trend of increasing ionization temperature with<br /> increasing atomic mass, as well as small differences between the ionization and<br /> excitation temperatures for Fe, the only element for which both temperatures<br /> can be measured. The best-fit two-temperature models suggest a combination of 3<br /> and 5 keV gas, which is consistent with the idea that the observed small<br /> deviations from a single temperature approximation are due to the effects of<br /> projection of the known radial temperature gradient in the cluster core along<br /> the line of sight. Comparison with the Chandra/ACIS and the XMM-Newton/RGS<br /> results on the other hand suggests that additional lower-temperature components<br /> are present in the ICM but not detectable by Hitomi SXS given its 1.8--20 keV<br /> energy band.
  • Aharonian, F., Akamatsu, H., Akimoto, F., Allen, S.W., Angelini, L., Audard, M., Awaki, H., Axelsson, M., Bamba, A., Bautz, M.W., Blandford, R., Brenneman, L.W., Brown, G.V., Bulbul, E., Cackett, E.M., Chernyakova, M., Chiao, M.P., Coppi, P.S., Costantini, E., De Plaa, J., De Vries, C.P., Den Herder, J.-W., Done, C., Dotani, T., Ebisawa, K., Eckart, M.E., Enoto, T., Ezoe, Y., Fabian, A.C., Ferrigno, C., Foster, A.R., Fujimoto, R., Fukazawa, Y., Furuzawa, A., Galeazzi, M., Gallo, L.C., Gandhi, P., Giustini, M., Goldwurm, A., Gu, L., Guainazzi, M., Haba, Y., Hagino, K., Hamaguchi, K., Harrus, I.M., Hatsukade, I., Hayashi, K., Hayashi, T., Hayashida, K., Hell, N., Hiraga, J.S., Hornschemeier, A., Hoshino, A., Hughes, J.P., Ichinohe, Y., Iizuka, R., Inoue, H., Inoue, Y., Ishida, M., Ishikawa, K., Ishisaki, Y., Iwai, M., Kaastra, J., Kallman, T., Kamae, T., Kataoka, J., Katsuda, S., Kawai, N., Kelley, R.L., Kilbourne, C.A., Kitaguchi, T., Kitamoto, S., Kitayama, T., Kohmura, T., Kokubun, M., Koyama, K., Koyama, S., Kretschmar, P., Krimm, H.A., Kubota, A., Kunieda, H., Laurent, P., Lee, S.-H., Leutenegger, M.A., Limousin, O., Loewenstein, M., Long, K.S., Lumb, D., Madejski, G., Maeda, Y., Maier, D., Makishima, K., Markevitch, M., Matsumoto, H., Matsushita, K., McCammon, D., McNamara, B.R., Mehdipour, M., Miller, E.D., Miller, J.M., Mineshige, S., Mitsuda, K., Mitsuishi, I., Miyazawa, T., Mizuno, T., Mori, H., Mori, K., Mukai, K., Murakami, H., Mushotzky, R.F., Nakagawa, T., Nakajima, H., Nakamori, T., Nakashima, S., Nakazawa, K., Nobukawa, K.K., Nobukawa, M., Noda, H., Odaka, H., Ohashi, T., Ohno, M., Okajima, T., Ota, N., Ozaki, M., Paerels, F., Paltani, S., Petre, R., Pinto, C., Porter, F.S., Pottschmidt, K., Reynolds, C.S., Safi-Harb, S., Saito, S., Sakai, K., Sasaki, T., Sato, G., Sato, K., Sato, R., Sawada, M., Schartel, N., Serlemtsos, P.J., Seta, H., Shidatsu, M., Simionescu, A., Smith, R.K., Soong, Y., Stawarz, Ł., Sugawara, Y., Sugita, S., Szymkowiak, A., Tajima, H., Takahashi, H., Takahashi, T., Takeda, S., Takei, Y., Tamagawa, T., Tamura, T., Tanaka, T., Tanaka, Y., Tanaka, Y.T., Tashiro, M.S., Tawara, Y., Terada, Y., Terashima, Y., Tombesi, F., Tomida, H., Tsuboi, Y., Tsujimoto, M., Tsunemi, H., Tsuru, T.G., Uchida, H., Uchiyama, H., Uchiyama, Y., Ueda, S., Ueda, Y., Uno, S., Urry, C.M., Ursino, E., Watanabe, S., Werner, N., Wilkins, D.R., Williams, B.J., Yamada, S., Yamaguchi, H., Yamaoka, K., Yamasaki, N.Y., Yamauchi, M., Yamauchi, S., Yaqoob, T., Yatsu, Y., Yonetoku, D., Zhuravleva, I., Zoghbi, A., Raassen, A.J.J.
    Publications of the Astronomical Society of Japan, 70(2), 2018  
    The Hitomi SXS spectrum of the Perseus cluster, with $\sim$5 eV resolution in<br /> the 2-9 keV band, offers an unprecedented benchmark of the atomic modeling and<br /> database for hot collisional plasmas. It reveals both successes and challenges<br /> of the current atomic codes. The latest versions of AtomDB/APEC (3.0.8), SPEX<br /> (3.03.00), and CHIANTI (8.0) all provide reasonable fits to the broad-band<br /> spectrum, and are in close agreement on best-fit temperature, emission measure,<br /> and abundances of a few elements such as Ni. For the Fe abundance, the APEC and<br /> SPEX measurements differ by 16%, which is 17 times higher than the statistical<br /> uncertainty. This is mostly attributed to the differences in adopted<br /> collisional excitation and dielectronic recombination rates of the strongest<br /> emission lines. We further investigate and compare the sensitivity of the<br /> derived physical parameters to the astrophysical source modeling and<br /> instrumental effects. The Hitomi results show that an accurate atomic code is<br /> as important as the astrophysical modeling and instrumental calibration<br /> aspects. Substantial updates of atomic databases and targeted laboratory<br /> measurements are needed to get the current codes ready for the data from the<br /> next Hitomi-level mission.

Research Projects

 20